国际肿瘤学杂志››2021,Vol. 48››Issue (8): 463-472.doi:10.3760/cma.j.cn371439-20200528-00089
冯志平, 杨传周, 陈婷, 朱家伦, 刘超, 吕娟, 陆建梅, 邓智勇()
收稿日期:
2020-05-28修回日期:
2021-03-15出版日期:
2021-08-08发布日期:
2021-09-08通讯作者:
邓智勇 E-mail:13888158986@163.com基金资助:
Feng Zhiping, Yang Chuanzhou, Chen Ting, Zhu Jialun, Liu Chao, Lyu Juan, Lu Jianmei, Deng Zhiyong()
Received:
2020-05-28Revised:
2021-03-15Online:
2021-08-08Published:
2021-09-08Contact:
Deng Zhiyong E-mail:13888158986@163.comSupported by:
摘要:
目的探讨含溴结合域蛋白4(BRD4)抑制剂对野生型Kras分化型甲状腺癌(DTC)的影响及其机制。方法选取DTC细胞株KrasWTTPC-1,构建基因突变型KrasG12DTPC-1细胞。采用CCK-8法检测BRD4抑制剂JQ-1对KrasWTTPC-1细胞增殖活力的影响。用0.2 μmol/L JQ-1处理KrasWTTPC-1细胞(JQ-1组),另设阴性对照(NC)组,分别采用Transwell侵袭实验、流式细胞术检测JQ-1对KrasWTTPC-1细胞侵袭和凋亡的影响;检测JQ-1对BRD4、miR-106b-5p、P21表达的影响,以及P21抑制剂UC2288对P21、BRD4表达的影响。将KrasWTTPC-1细胞分为JQ-1+NC-OE组、JQ-1+p21-OE组(过表达p21)及JQ-1+p21-OE+miR-106b-5p mimic组(同时过表达p21和miR-106b-5),检测各组细胞增殖、侵袭及凋亡情况。将TPC-1细胞分为KrasWT组、KrasWT+JQ-1组、KrasG12D组及KrasG12D+JQ-1组,检测各组细胞增殖、侵袭及凋亡情况。结果JQ-1以剂量和时间依赖方式抑制KrasWTTPC-1细胞的增殖活力。在NC组和JQ-1组中,细胞侵袭数分别为124.67±9.61、82.67±8.02,细胞凋亡率分别为(5.91±0.34)%、(10.33±1.10)%,差异均具有统计学意义(t=5.812,P=0.004;t=6.653,P=0.003)。JQ-1显著抑制KrasWTTPC-1细胞中BRD4及miR-106b-5p的表达并促进P21的表达。UC2288显著抑制P21表达,但对BRD4表达无显著影响。JQ-1+NC-OE组、JQ-1+p21-OE组及JQ-1+p21-OE+miR-106b-5p mimic组中,KrasWTTPC-1细胞24 h增殖活力分别为0.46±0.03、0.35±0.04、0.44±0.03(F=8.720,P=0.017),JQ-1+p21-OE组较JQ-1+NC-OE组显著降低(P<0.05);3组细胞侵袭数分别为83.00±9.17、56.67±6.03、79.67±10.07(F=8.347,P=0.018),JQ-1+p21-OE组较JQ-1+NC-OE组显著减少(P=0.009);3组细胞凋亡率分别为(10.00±0.49)%、(15.39±1.14)%、(10.32±0.80)%(F=37.764,P<0.001),JQ-1+p21-OE组较JQ-1+NC-OE组显著增加(P<0.001);JQ-1+p21-OE+miR-106b-5p mimic组与JQ-1+NC-OE相比,细胞增殖活力、侵袭数及凋亡率差异均无统计学意义(均P>0.05)。在KrasWT组、KrasWT+JQ-1组、KrasG12D组及KrasG12D+JQ-1组中,24 h细胞增殖活力分别为0.50±0.05、0.39±0.04、0.68±0.08、0.64±0.05(F=17.776,P<0.001),与KrasWT组相比,KrasWT+JQ-1组增殖活力显著降低,KrasG12D组增殖活力显著升高(均P<0.05);各组细胞侵袭数分别为129.33±11.50、86.00±9.54、161.67±13.01、146.33±13.20(F=22.598,P<0.001),与KrasWT组相比,KrasWT+JQ-1组侵袭数显著降低(P=0.002),KrasG12D组侵袭数显著增加(P=0.010);各组细胞凋亡率分别为(6.17±0.50)%、(10.42±0.73)%、(3.43±0.47)%、(3.41±0.32)%(F=119.170,P<0.001),与KrasWT组相比,KrasWT+JQ-1组中细胞凋亡率显著增加(P<0.001),KrasG12D组凋亡率显著降低(P<0.001);KrasG12D+JQ-1组细胞增殖活力、侵袭数及凋亡率与KrasG12D组相比差异均无统计学意义(均P>0.05)。结论BRD4抑制剂能够通过调节BRD4/miR-106b-5p/P21分子轴,特异性抑制Kras野生型DTC的发展,而对Kras突变型DTC肿瘤细胞的增殖、侵袭和凋亡无显著影响。
冯志平, 杨传周, 陈婷, 朱家伦, 刘超, 吕娟, 陆建梅, 邓智勇. BRD4抑制剂通过BRD4/miR-106b-5p/P21分子轴特异性抑制野生型Kras分化型甲状腺癌发展[J]. 国际肿瘤学杂志, 2021, 48(8): 463-472.
Feng Zhiping, Yang Chuanzhou, Chen Ting, Zhu Jialun, Liu Chao, Lyu Juan, Lu Jianmei, Deng Zhiyong. BRD4 inhibitor specifically inhibits the development of wild-type Kras differentiated thyroid carcinoma by regulating BRD4/miR-106b-5p/P21 axis[J]. Journal of International Oncology, 2021, 48(8): 463-472.
表2
CCK-8检测不同浓度JQ-1对KrasWT分化型甲状腺癌TPC-1细胞增殖活力的影响(A值, x -±s,n=3)"
JQ-1 (mol/L) |
0 h | 24 h | 48 h | 72 h |
---|---|---|---|---|
0 | 0.28±0.03 | 0.52±0.04 | 0.84±0.07 | 1.00±0.09 |
0.2 | 0.25±0.04 | 0.42±0.04a | 0.61±0.05a | 0.72±0.07a |
1.0 | 0.26±0.03 | 0.38±0.05b | 0.53±0.06b | 0.66±0.05b |
5.0 | 0.25±0.03 | 0.30±0.05 | 0.38±0.05c | 0.56±0.05c |
F值 | - | 12.817 | 39.122 | 30.786 |
P值 | - | 0.002 | <0.001 | <0.001 |
表3
蛋白质印迹法检测JQ-1对KrasWT分化型甲状腺癌TPC-1细胞中凋亡及EMT相关蛋白的影响( x -±s,n=3)"
组别 | caspase-3 | Bax | Bcl-2 | E-cadherin | N-cadherin | vimentin |
---|---|---|---|---|---|---|
NC组 | 0.99±0.10 | 0.97±0.06 | 1.00±0.09 | 1.00±0.09 | 0.99±0.10 | 1.00±0.11 |
JQ-1组 | 1.59±0.12 | 1.64±0.14 | 0.54±0.07 | 1.75±0.14 | 0.57±0.06 | 0.55±0.07 |
t值 | 6.813 | 7.691 | 7.328 | 8.140 | 6.321 | 6.144 |
P值 | 0.002 | 0.002 | 0.002 | 0.001 | 0.003 | 0.004 |
表4
CCK-8检测JQ-1通过BRD4/miR-106b-5p/P21对KrasWT分化型甲状腺癌TPC-1细胞增殖活力的影响(A值, x -±s,n=3)"
组别 | 0 h | 24 h | 48 h | 72 h |
---|---|---|---|---|
JQ-1+NC-OE组 | 0.23±0.03 | 0.46±0.03 | 0.62±0.04 | 0.70±0.05 |
JQ-1+p21-OE组 | 0.26±0.05 | 0.35±0.04a | 0.43±0.04a | 0.52±0.06a |
JQ-1+p21-OE+miR-106b-5p mimic组 | 0.26±0.03 | 0.44±0.03 | 0.58±0.04 | 0.67±0.04 |
F值 | - | 8.720 | 20.585 | 11.866 |
P值 | - | 0.017 | 0.002 | 0.008 |
表5
CCK-8检测JQ-1对KrasG12D分化型甲状腺癌TPC-1细胞增殖活力的影响(A值, x -±s,n=3)"
组别 | 0 h | 24 h | 48 h | 72 h |
---|---|---|---|---|
KrasWT组 | 0.28±0.03 | 0.50±0.05 | 0.85±0.07 | 0.98±0.10 |
KrasWT+JQ-1组 | 0.26±0.03 | 0.39±0.04a | 0.56±0.06a | 0.70±0.07a |
KrasG12D组 | 0.27±0.03 | 0.68±0.08a | 1.00±0.08a | 1.33±0.09a |
KrasG12D+JQ-1组 | 0.25±0.04 | 0.64±0.05 | 0.96±0.05 | 1.24±0.09 |
F值 | - | 17.776 | 25.101 | 32.655 |
P值 | - | <0.001 | <0.001 | <0.001 |
表6
蛋白质印迹法检测JQ-1对KrasG12D分化型甲状腺癌TPC-1细胞凋亡及EMT相关蛋白的影响( x -±s,n=3)"
组别 | caspase-3 | Bax | Bcl-2 | E-cadherin | N-cadherin | vimentin |
---|---|---|---|---|---|---|
KrasWT组 | 1.00±0.11 | 1.00±0.09 | 1.01±0.10 | 0.99±0.10 | 1.01±0.09 | 1.01±0.10 |
KrasWT+JQ-1组 | 1.80±0.15a | 1.75±0.14a | 0.62±0.05a | 1.51±0.14a | 0.58±0.07a | 0.52±0.07a |
KrasG12D组 | 0.77±0.08a | 0.72±0.07a | 1.54±1.10a | 0.51±0.06a | 1.45±0.13a | 1.78±0.13a |
KrasG12D+JQ-1组 | 0.91±0.08b | 0.84±0.09b | 1.41±0.13b | 0.58±0.06b | 1.33±0.12b | 1.65±0.13b |
F值 | 64.409 | 54.747 | 75.043 | 41.122 | 87.905 | 54.249 |
P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
[1] | 陈爱民, 骆献阳. 分化型甲状腺癌侵犯喉气管食管临床分析[J]. 临床耳鼻咽喉头颈外科杂志, 2017, (10):802-803. DOI: 10.13201/j.issn.1001-1781.2017.10.016. doi:10.13201/j.issn.1001-1781.2017.10.016 |
[2] | Qu R, Li J, Yang J, et al. Treatment of differentiated thyroid cancer: can endoscopic thyroidectomy via a chest-breast approach achieve similar therapeutic effects as open surgery?[J]. Surg Endosc, 2018,32(12):4749-4756. DOI: 10.1007/s00464-018-6221-1. doi:10.1007/s00464-018-6221-1 |
[3] | De La Fouchardière C, Decaussin-Petrucci M, Berthiller J, et al. Predictive factors of outcome in poorly differentiated thyroid carcinomas[J]. Eur J Cancer, 2018,92:40-47. DOI: 10.1016/j.ejca.2017.12.027. doi:S0959-8049(18)30005-4pmid:29413688 |
[4] | Xu K, Chen D, Qian D, et al. AZD5153, a novel BRD4 inhibitor, suppresses human thyroid carcinoma cell growth in vitro and in vivo[J]. Biochem Biophys Res Commun, 2018,499(3):531-537. DOI: 10.1016/j.bbrc.2018.03.184. doi:10.1016/j.bbrc.2018.03.184 |
[5] | Smeby J, Sveen A, Merok MA, et al. CMS-dependent prognostic impact of KRAS and BRAFV600Emutations in primary colorectal cancer[J]. Ann Oncol, 2018,29(5):1227-1234. DOI: 10.1093/annonc/mdy085. doi:S0923-7534(19)34549-1pmid:29518181 |
[6] | Telechea-Fernández M, Rodríguez-Fernández L, García C, et al. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status[J]. Oncotarget, 2018,9(10):9100-9113. DOI: 10.18632/oncotarget.23888. doi:10.18632/oncotarget.23888pmid:29507677 |
[7] | Duman BB, Kara OI, Uğuz A, et al. Evaluation of PTEN, PI3K, MTOR, and KRAS expression and their clinical and prognostic relevance to differentiated thyroid carcinoma[J]. Contemp Oncol (Pozn), 2014,18(4):234-240. DOI: 10.5114/wo.2014.43803. doi:10.5114/wo.2014.43803 |
[8] | Dong X, Hu X, Chen J, et al. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis[J]. Cell Death Dis, 2018,9(2):203. DOI: 10.1038/s41419-017-0181-6. doi:10.1038/s41419-017-0181-6 |
[9] | Shi DM, Bian XY, Qin CD, et al. miR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by targeting PTEN via PI3K/Akt pathway[J]. Onco Targets Ther, 2018,11:571-585. DOI: 10.2147/ott.S152611. doi:10.2147/ott.S152611 |
[10] | Wei K, Pan C, Yao G, et al. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer[J]. Cell Physiol Biochem, 2017,44(4):1545-1558. DOI: 10.1159/000485650. doi:10.1159/000485650pmid:29197876 |
[11] | 赵善民, 汤球, 刘志学, 等. K-RasG12D基因突变体慢病毒载体的构建及其鉴定[J]. 2014,14(2):223-225, 250. DOI: 10.13241/j.cnki.pmb.2014.02.006. doi:10.13241/j.cnki.pmb.2014.02.006 |
[12] | Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer[J]. Lancet Diabetes Endocrinol, 2014,2(5):356-358. DOI: 10.1016/s2213-8587(13)70215-8. doi:10.1016/s2213-8587(13)70215-8 |
[13] | Riesco-Eizaguirre G, Galofré JC, Grande E, et al. Spanish consensus for the management of patients with advanced radioactive iodine refractory differentiated thyroid cancer[J]. Endocrinol Nutr, 2016,63(4):e17-e24. DOI: 10.1016/j.endonu.2015.08.007. doi:10.1016/j.endonu.2015.08.007 |
[14] | Hedayati M, Zarif Yeganeh M, Sheikholeslami S, et al. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer[J]. Crit Rev Clin Lab Sci, 2016,53(4):217-227. DOI: 10.3109/10408363.2015.1129529. doi:10.3109/10408363.2015.1129529 |
[15] | Rossi M, Buratto M, Tagliati F, et al. Relevance of BRAF(V600E) mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer[J]. Thyroid, 2015,25(2):221-228. DOI: 10.1089/thy.2014.0338. doi:10.1089/thy.2014.0338 |
[16] | B Byeon HK, Na HJ, Yang YJ, et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition[J]. Mol Carcinog, 2016,55(11):1678-1687. DOI: 10.1002/mc.22418. doi:10.1002/mc.22418 |
[17] | Zhu X, Zhao L, Park JW, et al. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation[J]. Neoplasia, 2014,16(9):757-769. DOI: 10.1016/j.neo.2014.08.003. doi:10.1016/j.neo.2014.08.003 |
[18] | Wang ZD, Wei SQ, Wang QY. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis[J]. Am J Cancer Res, 2015,5(11):3339-3349. |
[19] | Wong CC, Qian Y, Li X, et al. SLC25A22 Promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synjournal of aspartate[J]. Gastroenterology, 2016,151(5): 945-960.e6. DOI: 10.1053/j.gastro.2016.07.011. doi:10.1053/j.gastro.2016.07.011 |
[20] | Yang L, Zhou Y, Li Y, et al. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells[J]. Cancer Lett, 2015,357(2):520-526. DOI: 10.1016/j.canlet.2014.12.003. doi:10.1016/j.canlet.2014.12.003 |
[21] | Deneka AY, Haber L, Kopp MC, et al. Tumor-targeted SN38 inhi-bits growth of early stage non-small cell lung cancer (NSCLC) in a KRas/p53 transgenic mouse model[J]. PLoS One, 2017,12(4):e0176747. DOI: 10.1371/journal.pone.0176747. doi:10.1371/journal.pone.0176747 |
[22] | Kim H, Hwang H, Lee H, et al. L1 cell adhesion molecule promotes migration and invasion via JNK activation in extrahepatic cholangiocarcinoma cells with activating KRAS mutation[J]. Mol Cells, 2017,40(5):363-370. DOI: 10.14348/molcells.2017.2282. doi:10.14348/molcells.2017.2282 |
[23] | Du L, Kim JJ, Shen J, et al. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis[J]. Oncotarget, 2017,8(13):22175-22186. DOI: 10.18632/oncotarget.14549. doi:10.18632/oncotarget.14549 |
[24] | Román M, Baraibar I, López I, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target[J]. Mol Cancer, 2018,17(1):33. DOI: 10.1186/s12943-018-0789-x. doi:10.1186/s12943-018-0789-x |
[1] | 王子琪, 罗盼, 叶永英, 吴伟莉.甲状腺腺样囊性癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(3): 191-192. |
[2] | 张劲男, 刘邦卿, 李军, 刘晓辉.BHLHE40靶向HMGA2激活氧化磷酸化通路降低甲状腺癌细胞对顺铂敏感性的研究[J]. 国际肿瘤学杂志, 2023, 50(7): 398-406. |
[3] | 李劲浩, 王桂东, 李雪菲, 刘子琳, 孟凯龙.静脉期CT值预测甲状腺乳头状癌中央组淋巴结转移的临床研究[J]. 国际肿瘤学杂志, 2022, 49(10): 581-585. |
[4] | 吴宇平, 张潇宇, 陆克义.PD-L1在甲状腺癌中的作用机制及其在诊疗中的应用[J]. 国际肿瘤学杂志, 2021, 48(9): 560-563. |
[5] | 侯小锋, 薛金才, 田尤新, 刘勤江.分化型甲状腺癌诊断与外科治疗四十年[J]. 国际肿瘤学杂志, 2020, 47(8): 449-456. |
[6] | 程虎, 刘名奎, 陈天平.长非编码RNA AFAP1-AS1对甲状腺癌细胞增殖和侵袭的影响及其机制[J]. 国际肿瘤学杂志, 2020, 47(6): 327-332. |
[7] | 王家乐, 曹君.甲状腺癌内科治疗进展[J]. 国际肿瘤学杂志, 2020, 47(4): 231-235. |
[8] | 张李卓, 钱杨洋, 郑国湾, 葛明华.PD-1/PD-L1在肿瘤中的机制研究及其在甲状腺癌中的诊治价值[J]. 国际肿瘤学杂志, 2020, 47(1): 39-42. |
[9] | 武元元, 王军.甲状腺未分化癌的靶向药物治疗进展[J]. 国际肿瘤学杂志, 2019, 46(2): 98-101. |
[10] | 董方, 薛金才, 王云生, 刘勤江.甲状腺癌外照射放射治疗的变迁[J]. 国际肿瘤学杂志, 2019, 46(11): 641-648. |
[11] | 陈宏存,李良,江鸣,张军,姚宝忠,姜友,廖理芳.甲状腺乳头状癌右侧喉返神经后方淋巴结转移的相关因素分析及其临床意义[J]. 国际肿瘤学杂志, 2018, 45(7): 391-394. |
[12] | 谭向荣,韩春,赵佳正,郭良.甲状腺乳头状癌右侧喉返神经深层淋巴结转移及清扫[J]. 国际肿瘤学杂志, 2018, 45(6): 365-367. |
[13] | 叶志华,黄耿,付金伦,桂定文.miR-1280通过激活p21基因的表达对膀胱癌细胞周期及增殖的影响[J]. 国际肿瘤学杂志, 2018, 45(3): 134-138. |
[14] | 李艳,陈琼霞,王绪明.敲低Stat5对甲状腺癌TT细胞侵袭及上皮间质转化的影响[J]. 国际肿瘤学杂志, 2018, 45(1): 1-. |
[15] | 黄耿,姜卫东,毛青,桂定文.外源性dsRNA对肾透明细胞癌细胞中p21表达的影响[J]. 国际肿瘤学杂志, 2017, 44(7): 481-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||