国际肿瘤学杂志››2020,Vol. 47››Issue (12): 765-768.doi:10.3760/cma.j.cn371439-20200214-00117
• 综述 •上一篇
收稿日期:
2020-02-14修回日期:
2020-08-19出版日期:
2020-12-08发布日期:
2021-01-28通讯作者:
侯元美 E-mail:1761222033@qq.comReceived:
2020-02-14Revised:
2020-08-19Online:
2020-12-08Published:
2021-01-28Contact:
Hou Yuanmei E-mail:1761222033@qq.com摘要:
免疫治疗策略在多发性骨髓瘤(MM)的治疗方面已显现出益处,但仍有一定比例的患者进展为复发或难治性MM。当前最新免疫治疗策略除了包括针对肿瘤细胞表面抗原的单克隆抗体外,双特异性抗体、免疫检查点抑制剂、嵌合抗原受体T细胞免疫、布鲁顿酪氨酸激酶抑制剂等为复发或难治性MM的免疫治疗提供了更多可能。
侯元美, 李军朋. 复发或难治性多发性骨髓瘤免疫治疗新进展[J]. 国际肿瘤学杂志, 2020, 47(12): 765-768.
Hou Yuanmei, Li Junpeng. Recent advances in immunotherapy for relapsed or refractory multiple myeloma[J]. Journal of International Oncology, 2020, 47(12): 765-768.
[1] | Moreau P, San Miguel J, Sonneveld P , et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis,treatment and follow-up[J]. Ann Oncol, 2017,28Supple 4: iv52-iv61. DOI: 10.1093/annonc/mdx096. |
[2] | Muccio VE, Saraci E, Gilestro M, et al. Multiple myeloma: new surface antigens for the characterization of plasma cells in the era of novel agents[J]. Cytometry B Clin Cytom, 2016,9(1):81-90. DOI: 10.1002/cyto.b.21279. |
[3] | Krejcik J, Frerichs KA, Nijhof IS, et al. Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab[J]. Clin Cancer Res, 2017,23(24):7498-7511. DOI: 10.1158/1078-0432.CCR-17-2027. |
[4] | Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib and dexamethasone for multiple myeloma[J]. N Engl J Med, 2016,375(8):754-766. DOI: 10.1056/NEJMoa1606038. |
[5] | Dimopoulos MA, San-Miguel J, Belch A, et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: update danalysis of POLLUX[J]. Haematologica, 2018,103(12):2088-2096. DOI: 10.3324/haematol.2018.194282. pmid:30237262 |
[6] | Luo XW, Du XQ, Li JL, et al. Treatment options for refractory/relapsed multiple myeloma: an updated evidence synjournal by network meta-analysis[J]. Cancer Manag Res, 2018,10:2817-2823. DOI: 10.2147/CMAR.S166640. |
[7] | Kurdi AT, Glavey SV, Bezman NA, et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab[J]. Mol Cancer Ther, 2018,17(7):1454-1463. DOI: 10.1158/1535-7163.MCT-17-0998. pmid:29654064 |
[8] | Dimopoulos MA, Lonial S, Betts KA, et al. Elotuzumab plus lenali-domide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial[J]. Cancer, 2018,124(20):4032-4043. DOI: 10.1002/cncr.31680. |
[9] | Tai YT, Mayes PA, Acharya C, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma[J]. Blood, 2014,123(20):3128-3138. DOI: 10.1182/blood-2013-10-535088. pmid:24569262 |
[10] | Trudel S, Lendvai N, Popat R, et al. Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial[J]. Lancet Oncol, 2018,19(12):1641-1653. DOI: 10.1016/S1470-2045(18)30576-X. |
[11] | Pahl A, Lutz C, Hechler T, et al. Amanitins and their development as a payload for antibody-drug conjugates[J]. Drug Discov Today Technol, 2018,30:85-89. DOI: 10.1016/j.ddtec.2018.08.005. |
[12] | Cohen AD, Garfall AL, Dogan A, et al. Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapies[J]. Blood Adv, 2019,3(16):2487-2490. DOI: 10.1182/bloodadvances.2019000466. |
[13] | Hipp S, Tai YT, Blanset D, et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo[J]. Leukemia, 2017,31(8):1743-1751. DOI: 10.1038/leu.2016.388. |
[14] | Seckinger A, Delgado JA, Moser S, et al. Target expression, gene-ration, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment[J]. Cancer Cell, 2017,31(3):396-410. DOI: 10.1016/j.ccell.2017.02.002. |
[15] | Chan WK, Kang S, Youssef Y, et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma[J]. Cancer Immunol Res, 2018,6(7):776-787. DOI: 10.1158/2326-6066.CIR-17-0649. doi:10.1158/2326-6066.CIR-17-0649pmid:29769244 |
[16] | Ramadoss NS, Schulman AD, Choi SH, et al. An anti-B cell maturation antigen bispecific antibody for multiple myeloma[J]. J Am Chem Soc, 2015,137(16):5288-5291. DOI: 10.1021/jacs.5b01876. |
[17] | Görgün G, Samur MK, Cowens KB, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma[J]. Clin Cancer Res, 2015,21(20):4607-4618. DOI: 10.1158/1078-0432.CCR-15-0200. doi:10.1158/1078-0432.CCR-15-0200pmid:25979485 |
[18] | Jing W, Gershan JA, Weber J, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immuno-therapy for myeloma[J]. J Immunother Cancer, 2015,3(1):2. DOI: 10.1186/s40425-014-0043-z. |
[19] | Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma[J]. JCI Insight, 2018,3(8):e120505. DOI: 10.1172/jci.insight.120505. |
[20] | Lee L, Draper B, Chaplin N, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma[J]. Blood, 2018,131(7):746-758. DOI: 10.1182/blood-2017-05-781351. pmid:29284597 |
[21] | Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma[J]. N Engl J Med, 2015,373(11):1040-1047. DOI: 10.1056/NEJMoa1504542. pmid:26352815 |
[22] | Chen D, Zou J, Zong Y, et al. Anti-human CD138 monoclonal antibodies and their bispecific formats: generation and characterization[J]. Immunopharmacol Immunotoxicol, 2016,38(3):175-183. DOI: 10.3109/08923973.2016.1153110. |
[23] | Palaiologou M, Delladetsima I, Tiniakos D. CD138 (syndecan-1) expression in health and disease[J]. Histol Histopathol, 2014,29(2):177-189. DOI: 10.14670/HH-29.177. pmid:24150912 |
[24] | Fichou N, Gouard S, Maurel C, et al. Single-dose anti-CD138 radioimmunotherapy: bismuth-213 is more efficient than lutetium-177 for treatment of multiple myeloma in a preclinical model[J]. Front Med (Lausanne), 2015,2:76. DOI: 10.3389/fmed.2015.00076. |
[25] | Wang X, Walter M, Urak R, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma[J]. Clin Cancer Res, 2018,24(1):106-119. DOI: 10.1158/1078-0432.CCR-17-0344. pmid:29061640 |
[26] | Shi Y, Wang G, Muhowski EM, et al. Ibrutinib reprograms the glucocorticoid receptor in chronic lymphocytic leukemia cells[J]. Leukemia, 2019,33(7):1650-1662. DOI: 10.1038/s41375-019-0381-4. |
[27] | Natarajan G, Terrazas C, Oghumu S, et al. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells[J]. OncoImmunology, 2015,5(1):e1057385. DOI: 10.1080/2162402X.2016.1057385. pmid:26942065 |
[28] | Ma J, Gong W, Liu S, et al. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3[J]. Tumour Biol, 2018,40(1):1010428317731369. DOI: 10.1177/1010428317731369. doi:10.1177/1010428317731369pmid:29320977 |
[1] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[2] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[3] | 任露, 谢晓丽, 张坤, 王丽娟.双氢青蒿素联合卡非佐米对多发性骨髓瘤细胞活性、增殖、凋亡的影响及机制研究[J]. 国际肿瘤学杂志, 2024, 51(3): 129-136. |
[4] | 秦雪倩, 杨宏宇, 王真, 王孟超, 张欣.双特异性抗体在非小细胞肺癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 558-563. |
[5] | 岳红云, 张百红.免疫检查点激动剂治疗实体瘤的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 290-293. |
[6] | 张雨潇, 张连生, 李莉娟.新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[7] | 许婷婷, 胡超苏, 李宝生.抗EGFR单抗治疗局部晚期头颈部鳞状细胞癌临床共识(2023年版)[J]. 国际肿瘤学杂志, 2023, 50(1): 1-11. |
[8] | 赵建昊, 段衍超.多发性骨髓瘤髓外病变发病机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 55-59. |
[9] | 陆佳玲, 黄慧娟, 刘丹, 陈妍心, 马骁, 吴德沛.博纳吐单抗治疗急性B淋巴细胞白血病的疗效和安全性[J]. 国际肿瘤学杂志, 2022, 49(8): 494-498. |
[10] | 高珊, 陆敏秋, 石磊, 褚彬, 房立娟, 项秋晴, 王宇彤, 丁月华, 鲍立.伊沙佐米联合方案治疗复发/难治多发性骨髓瘤的疗效和安全性分析[J]. 国际肿瘤学杂志, 2022, 49(5): 286-291. |
[11] | 张静娴, 易丹, 李小江.抗体偶联药物在非小细胞肺癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(5): 296-301. |
[12] | 庞静丹, 杜瀛瀛, 笪洁.抗体药物偶联物治疗晚期实体瘤的不良反应和处理措施[J]. 国际肿瘤学杂志, 2022, 49(4): 220-224. |
[13] | 郭奕维, 刘爱春.EB病毒阳性弥漫大B细胞淋巴瘤的治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 385-388. |
[14] | 孙睿婕, 单宁宁.复发难治性多发性骨髓瘤的免疫靶向治疗及存在的问题[J]. 国际肿瘤学杂志, 2021, 48(6): 381-384. |
[15] | 詹晓芬, 翁雪芬, 杨时煌, 许镒洧, 彭裕辉, 郭竑.基于血清蛋白质组分析技术鉴定鼻咽癌ENO1自身抗体诊断分子标志物[J]. 国际肿瘤学杂志, 2020, 47(9): 513-517. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||