国际肿瘤学杂志››2020,Vol. 47››Issue (12): 752-755.doi:10.3760/cma.j.cn371439-20200703-00114
收稿日期:
2020-07-03修回日期:
2020-09-04出版日期:
2020-12-08发布日期:
2021-01-28通讯作者:
尹剑云 E-mail:yinjianyun99@sina.comYin Jianyun1(), Wang Peiwei2, Gu Jianwei1
Received:
2020-07-03Revised:
2020-09-04Online:
2020-12-08Published:
2021-01-28Contact:
Yin Jianyun E-mail:yinjianyun99@sina.com摘要:
m6A甲基化可以调节机体RNA的代谢,参与乳腺癌的发病过程。m6A甲基转移酶、m6A去甲基化酶、m6A结合蛋白共同调节m6A甲基化修饰的动态可逆过程。近年来研究显示甲基转移酶样蛋白(METTL)3、MELLT14、KIAA1429、去甲基化酶脂肪和肥胖相关蛋白、YTH结构域家族蛋白1~3等相关因子在乳腺癌中异常表达,可能通过调节m6A甲基化和去甲基化过程影响乳腺癌的发生与发展,对其进行深入研究将为乳腺癌的临床诊治提供一个新的思路和靶点。
尹剑云, 王培伟, 顾建伟. m6A甲基化与乳腺癌[J]. 国际肿瘤学杂志, 2020, 47(12): 752-755.
Yin Jianyun, Wang Peiwei, Gu Jianwei. m6A methylation and breast cancer[J]. Journal of International Oncology, 2020, 47(12): 752-755.
[1] | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30. DOI: 10.3322/caac.21387. doi:10.3322/caac.21387pmid:28055103 |
[2] | Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA Cancer J Clin, 2016,66(4):271-289. DOI: 10.3322/caac.21349. doi:10.3322/caac.21349pmid:27253694 |
[3] | Lan Q, Liu PY, Haase J, et al. The critical role of RNA m6A methylation in cancer[J]. Cancer Res, 2019,79(7):1285-1292. DOI: 10.1158/0008-5472.CAN-18-2965. doi:10.1158/0008-5472.CAN-18-2965pmid:30894375 |
[4] | Liu Q, Gregory RI. RNAmod: an integrated system for the annotation of mRNA modifications[J]. Nucleic Acids Res, 2019,47(W1):W548-W555. DOI: 10.1093/nar/gkz479. doi:10.1093/nar/gkz479pmid:31147718 |
[5] | Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017,45(10):6051-6063. DOI: 10.1093/nar/gkx141. doi:10.1093/nar/gkx141pmid:28334903 |
[6] | Pan Y, Ma P, Liu Y, et al. Multiple functions of m6A RNA methylation in cancer[J]. J Hematol Oncol, 2018,11(1):48. DOI: 10.1186/s13045-018-0590-8. doi:10.1186/s13045-018-0590-8pmid:29587823 |
[7] | Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017,169(7):1187-1200. DOI: 10.1016/j.cell.2017.05.045. doi:10.1016/j.cell.2017.05.045pmid:28622506 |
[8] | Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2[J]. Gene, 2020,722:144076. DOI: 10.1016/j.gene.2019.144076. doi:10.1016/j.gene.2019.144076pmid:31454538 |
[9] | Cai X, Wang X, Cao C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018,415:11-19. DOI: 10.1016/j.canlet.2017.11.018. doi:10.1016/j.canlet.2017.11.018pmid:29174803 |
[10] | Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Mol Cell, 2016,63(2):306-317. DOI: 10.1016/j.molcel.2016.05.041. doi:10.1016/j.molcel.2016.05.041pmid:27373337 |
[11] | Yi D, Wang R, Shi X, et al. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6 methyladenosine and hsa miR 146a 5p expression[J]. Oncol Rep, 2020,43(5):1375-1386. DOI: 10.3892/or.2020.7515. doi:10.3892/or.2020.7515pmid:32323801 |
[12] | Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019,19(1):326. DOI: 10.1186/s12885-019-5538-z. doi:10.1186/s12885-019-5538-zpmid:30953473 |
[13] | Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018,4:10. DOI: 10.1038/s41421-018-0019-0. doi:10.1038/s41421-018-0019-0pmid:29507755 |
[14] | Qian JY, Gao J, Sun X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019,38(33):6123-6141. DOI: 10.1038/s41388-019-0861-z. doi:10.1038/s41388-019-0861-zpmid:31285549 |
[15] | Deng X, Su R, Feng X, et al. Role of N6-methyladenosine modification in cancer[J]. Curr Opin Genet Dev, 2018,48:1-7. DOI: 10.1016/j.gde.2017.10.005. doi:10.1016/j.gde.2017.10.005pmid:29040886 |
[16] | Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019,18(1):46. DOI: 10.1186/s12943-019-1004-4. doi:10.1186/s12943-019-1004-4pmid:30922314 |
[17] | Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J]. Cancer Commun (Lond), 2020,40(10):484-500. DOI: 10.1002/cac2.12075. |
[18] | Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast can-cer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016,113(14):E2047-2056. DOI: 10.1073/pnas.1602883113. doi:10.1073/pnas.1602883113pmid:27001847 |
[19] | Zhang C, Zhi WI, Lu H, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016,7(40):64527-64542. DOI: 10.18632/oncotarget.11743. doi:10.18632/oncotarget.11743pmid:27590511 |
[20] | Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers[J]. Annu Rev Cell Dev Biol, 2017: 33:319-342. DOI: 10.1146/annurev-cellbio-100616-060758. doi:10.1146/annurev-cellbio-100616-060758pmid:28759256 |
[21] | Patil DP, Pickering BF, Jaffrey SR. Reading m6A in the transcriptome: m6A-binding proteins[J]. Trends Cell Biol, 2018,28(2):113-127. DOI: 10.1016/j.tcb.2017.10.001. doi:10.1016/j.tcb.2017.10.001pmid:29103884 |
[22] | Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014. doi:10.1016/j.cell.2015.05.014pmid:26046440 |
[23] | Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017,27(3):315-328. DOI: 10.1038/cr.2017.15. doi:10.1038/cr.2017.15pmid:28106072 |
[24] | Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4): 507-519. DIO: 10.1016/j.molcel. 2016. 01. 012. |
[25] | Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017,27(9):1115-1127. DOI: 10.1038/cr.2017.99. doi:10.1038/cr.2017.99pmid:28809393 |
[26] | Meyer KD, Patil DP, Zhou J, et al. 5'UTR m6A promotes cap-independent translation[J]. Cell, 2015,163(4):999-1010. DOI: 10.1016/j.cell.2015.10.012. doi:10.1016/j.cell.2015.10.012pmid:26593424 |
[27] | Liu L, Liu X, Dong Z, et al. N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival[J]. J Cancer, 2019,10(22):5447-5459. DOI: 10.7150/jca.35053. doi:10.7150/jca.35053pmid:31632489 |
[28] | Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015,162(6):1299-1308. DOI: 10.1016/j.cell.2015.08.011. doi:10.1016/j.cell.2015.08.011pmid:26321680 |
[29] | Liu N, Dai Q, Zheng G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015,518(7540):560-564. DOI: 10.1038/nature14234. doi:10.1038/nature14234pmid:25719671 |
[30] | Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017,45(10):6051-6063. DOI: 10.1093/nar/gkx141. doi:10.1093/nar/gkx141pmid:28334903 |
[31] | Klinge CM, Piell KM, Tooley CS. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells[J]. Sci Rep, 2019,9(1):9430. DOI: 10.1038/s41598-019-45636-8. doi:10.1038/s41598-019-45636-8pmid:31263129 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 陈波光, 王苏贵, 张永杰.血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[5] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[6] | 王景, 许文婷.中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[7] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英.HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[8] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰.miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[9] | 王文德, 曾德.乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[10] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[11] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[12] | 周婷, 徐少华, 梅林.贝伐珠单抗联合卡培他滨治疗晚期乳腺癌的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 144-149. |
[13] | 黎立喜, 张娣, 罗扬, 马飞.PARP抑制剂在乳腺癌中的临床应用[J]. 国际肿瘤学杂志, 2023, 50(2): 91-96. |
[14] | 陈群响, 张晓钰, 张妍, 张凯翔, 李捷, 陈曦.伊尼妥单抗联合长春瑞滨治疗HER2阳性转移性乳腺癌1例[J]. 国际肿瘤学杂志, 2023, 50(12): 763-765. |
[15] | 耿睿, 马俊强, 郭强, 牛钊峰.老年乳腺癌患者的综合治疗方式选择倾向及其影响因素[J]. 国际肿瘤学杂志, 2023, 50(11): 650-654. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||