国际肿瘤学杂志››2022,Vol. 49››Issue (7): 436-440.doi:10.3760/cma.j.cn371439-20220414-00083
王柳雪1, 席晓平1, 刘静静1, 沈国民2, 杨海平1()
收稿日期:
2022-04-14修回日期:
2022-05-25出版日期:
2022-07-08发布日期:
2022-09-19通讯作者:
杨海平 E-mail:13938820189@163.com基金资助:
Wang Liuxue1, Xi Xiaoping1, Liu Jingjing1, Shen Guomin2, Yang Haiping1()
Received:
2022-04-14Revised:
2022-05-25Online:
2022-07-08Published:
2022-09-19Contact:
Yang Haiping E-mail:13938820189@163.comSupported by:
摘要:
临床前研究表明腺苷酸活化蛋白激酶(AMPK)激活剂二甲双胍可以抑制淋巴瘤细胞的生长,不影响正常淋巴细胞的功能,同时可促进淋巴瘤细胞凋亡,改善肿瘤免疫环境。临床研究表明二甲双胍用于初治及维持治疗均可以提高非霍奇金淋巴瘤(NHL)化疗疗效,改善预后;通过对糖代谢的影响,改善血糖水平,减少类固醇糖尿病的发生。二甲双胍抗NHL的主要分子机制包括激活肿瘤细胞内AMPK,抑制哺乳动物雷帕霉素靶蛋白信号、抑制关键的胆固醇合成、改善葡萄糖代谢、增强高细胞毒性T淋巴细胞活性等。目前研究显示,二甲双胍可能成为NHL治疗的一种新策略。
王柳雪, 席晓平, 刘静静, 沈国民, 杨海平. 二甲双胍在非霍奇金淋巴瘤中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(7): 436-440.
Wang Liuxue, Xi Xiaoping, Liu Jingjing, Shen Guomin, Yang Haiping. Research progress of metformin in non-Hodgkin lymphoma[J]. Journal of International Oncology, 2022, 49(7): 436-440.
[1] | 中国抗癌协会淋巴瘤专业委员会, 中国医师协会肿瘤医师分会, 中国医疗保健国际交流促进会肿瘤内科分会. 中国淋巴瘤治疗指南(2021年版)[J]. 中华肿瘤杂志, 2021, 43(7): 707-735. DOI: 10.3760/cma.j.cn112152-20210516-00382. doi:10.3760/cma.j.cn112152-20210516-00382 |
[2] | Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma[J]. Leukemia, 2020, 34(10): 2592-2606. DOI: 10.1038/s41375-020-0990-y. doi:10.1038/s41375-020-0990-y |
[3] | 赵可, 王华庆. 复发/难治外周T细胞淋巴瘤的新药治疗进展[J]. 国际肿瘤学杂志, 2020, 47(6): 321-326. DOI: 10.3760/cma.j.cn371439-20200507-00029. doi:10.3760/cma.j.cn371439-20200507-00029 |
[4] | 龚予希, 翟博雅, 杨野梵, 等. 弥漫大B细胞淋巴瘤分型及预后研究进展[J]. 白血病·淋巴瘤, 2021, 30(9): 565-568. DOI: 10.3760/cma.j.cn115356-20210118-00019. doi:10.3760/cma.j.cn115356-20210118-00019 |
[5] | Cunha Júnior AD, Pericole FV, Carvalheira JBC. Metformin and blood cancers[J]. Clinics (Sao Paulo), 2018, 73(suppl 1): e412 s. DOI: 10.6061/clinics/2018/e412s. doi:10.6061/clinics/2018/e412s |
[6] | Biondani G, Peyron JF. Metformin, an anti-diabetic drug to target leukemia[J]. Front Endocrinol (Lausanne), 2018, 9: 446. DOI: 10.3389/fendo.2018.00446. doi:10.3389/fendo.2018.00446 |
[7] | Wang Y, Xu W, Yan Z, et al. Metformin induces autophagy and G0/G1phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways[J]. J Exp Clin Cancer Res, 2018, 37(1): 63-75. DOI: 10.1186/s13046-018-0731-5. doi:10.1186/s13046-018-0731-5 |
[8] | Chukkapalli V, Gordon LI, Venugopal P, et al. Metabolic changes associated with metformin potentiates Bcl-2 inhibitor, Venetoclax, and CDK9 inhibitor, BAY1143572 and reduces viability of lymphoma cells[J]. Oncotarget, 2018, 9(30): 21166-21181. DOI: 10.18632/oncotarget.24989. doi:10.18632/oncotarget.24989 |
[9] | Kaneto H, Kimura T, Obata A, et al. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history[J]. Int J Mol Sci, 2021, 22(5): 2596-2609. DOI: 10.3390/ijms22052596. doi:10.3390/ijms22052596 |
[10] | Li M, Li X, Zhang H, et al. Molecular mechanisms of metformin for diabetes and cancer treatment[J]. Front Physiol, 2018, 9: 1039. DOI: 10.3389/fphys.2018.01039. doi:10.3389/fphys.2018.01039 |
[11] | Shi WY, Xiao D, Wang L, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy[J]. Cell Death Dis, 2012, 3(3): e275. DOI: 10.1038/cddis.2012.13. doi:10.1038/cddis.2012.13 |
[12] | Jiang XN, Zhang Y, Wang WG, et al. Alteration of cholesterol metabolism by metformin is associated with improved outcome in type Ⅱ diabetic patients with diffuse large B-cell lymphoma[J]. Front Oncol, 2021, 11: 608238. DOI: 10.3389/fonc.2021.608238. doi:10.3389/fonc.2021.608238 |
[13] | Bagaloni I, Visani A, Biagiotti S, et al. Metabolic switch and cytotoxic effect of metformin on Burkitt lymphoma[J]. Front Oncol, 2021, 11: 661102. DOI: 10.3389/fonc.2021.661102. doi:10.3389/fonc.2021.661102 |
[14] | Meng X, Lu Z, Lv Q, et al. Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy[J]. Acta Biomater, 2022, 145: 222-234. DOI: 10.1016/j.actbio.2022.04.022. doi:10.1016/j.actbio.2022.04.022 |
[15] | Eikawa S, Nishida M, Mizukami S, et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin[J]. Proc Natl Acad Sci U S A, 2015, 112(6): 1809-1814. DOI: 10.1073/pnas.1417636112. doi:10.1073/pnas.1417636112 |
[16] | Cha JH, Yang WH, Xia W, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1[J]. Mol Cell, 2018, 71(4): 606-620.e7. DOI: 10.1016/j.molcel.2018.07.030. doi:10.1016/j.molcel.2018.07.030 |
[17] | Bahrambeigi S, Shafiei-Irannejad V. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin[J]. Biochem Pharmacol, 2020, 174: 113787. DOI: 10.1016/j.bcp.2019.113787. doi:10.1016/j.bcp.2019.113787 |
[18] | Zhang Z, Li F, Tian Y, et al. Metformin enhances the antitumor activity of CD8+T lymphocytes via the AMPK-miR-107-Eomes-PD-1 pathway[J]. J Immunol, 2020, 204(9): 2575-2588. DOI: 10.4049/jimmunol.1901213. doi:10.4049/jimmunol.1901213pmid:32221038 |
[19] | Gonzalez-Gonzalez JG, Mireles-Zavala LG, Rodriguez-Gutierrez R, et al. Hyperglycemia related to high-dose glucocorticoid use in noncritically ill patients[J]. Diabetol Metab Syndr, 2013, 5: 18. DOI: 10.1186/1758-5996-5-18. doi:10.1186/1758-5996-5-18pmid:23557386 |
[20] | Lamar ZS, Dothard A, Kennedy L, et al. Hyperglycemia during first-line R-CHOP or dose adjusted R-EPOCH chemotherapy for non-Hodgkin lymphoma is prevalent and associated with chemotherapy alteration—a retrospective study[J]. Leuk Lymphoma, 2018, 59(8): 1871-1877. DOI: 10.1080/10428194.2017.1410889. doi:10.1080/10428194.2017.1410889 |
[21] | 胡洋, 许艳洁, 李梦真, 等. 合并糖尿病及治疗过程中血糖升高对弥漫大B细胞淋巴瘤患者预后的影响[J]. 中华血液学杂志, 2021, 42(2): 151-157. DOI: 10.3760/cma.j.issn.0253-2727.2021.02.011. doi:10.3760/cma.j.issn.0253-2727.2021.02.011 |
[22] | Drozd-Sokolowska J, Zaucha JM, Biecek P, et al. Type 2 diabetes mellitus compromises the survival of diffuse large B-cell lymphoma patients treated with (R)-CHOP—the PLRG report[J]. Sci Rep, 2020, 10(1): 3517. DOI: 10.1038/s41598-020-60565-7. doi:10.1038/s41598-020-60565-7pmid:32103128 |
[23] | Landis D, Sutter A, Fernandez F, et al. The effect of metformin on glucose metabolism in patients receiving glucocorticoids[J]. Am J Med Sci, 2022: S0002- 9629(22)00208-7. DOI: 10.1016/j.amjms.2022.04.027. doi:10.1016/j.amjms.2022.04.027 |
[24] | Ochola LA, Nyamu DG, Guantai EM, et al. Metformin’s effectiveness in preventing prednisone-induced hyperglycemia in hematological cancers[J]. J Oncol Pharm Pract, 2020, 26(4): 823-834. DOI: 10.1177/1078155219873048. doi:10.1177/1078155219873048pmid:31495292 |
[25] | Singh AR, Gu JJ, Zhang Q, et al. Metformin sensitizes therapeutic agents and improves outcome in pre-clinical and clinical diffuse large B-cell lymphoma[J]. Cancer Metab, 2020, 8: 10. DOI: 10.1186/s40170-020-00213-w. PMID: 32647571. doi:10.1186/s40170-020-00213-wpmid:32647571 |
[26] | Fan X, Zhong HJ, Zhao BB, et al. Metformin prolonged the survival of diffuse large B-cell lymphoma and grade 3b follicular lymphoma patients responding to first-line treatment with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone: a prospective phase Ⅱ clinical trial[J]. Transl Cancer Res, 2018, 7(4): 1044-1053. DOI: 10.21037/tcr.2018.07.20. doi:10.21037/tcr.2018.07.20 |
[27] | Wang Y, Maurer MJ, Larson MC, et al. Impact of metformin use on the outcomes of newly diagnosed diffuse large B-cell lymphoma and follicular lymphoma[J]. Br J Haematol, 2019, 186(6): 820-828. DOI: 10.1111/bjh.15997. doi:10.1111/bjh.15997 |
[28] | Chen K, Li Y, Guo Z, et al. Metformin: current clinical applications in nondiabetic patients with cancer[J]. Aging (Albany NY), 2020, 12(4): 3993-4009. DOI: 10.18632/aging.102787. doi:10.18632/aging.102787 |
[29] | Trucco M, Barredo JC, Goldberg J, et al. A phase Ⅰ window, dose escalating and safety trial of metformin in combination with induction chemotherapy in relapsed refractory acute lymphoblastic leukemia: metformin with induction chemotherapy of vincristine, dexamethasone, PEG-asparaginase, and doxorubicin[J]. Pediatr Blood Cancer, 2018, 65(9): e27224. DOI: 10.1002/pbc.27224. doi:10.1002/pbc.27224 |
[30] | Singh SV, Chaube B, Mayengbam SS, et al. Metformin induced lactic acidosis impaired response of cancer cells towards paclitaxel and doxorubicin: Role of monocarboxylate transporter[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(3): 166011. DOI: 10.1016/j.bbadis.2020.166011. doi:10.1016/j.bbadis.2020.166011 |
[31] | Laporte F, Hamdi S, Oksman F, et al. Auto-immune neutropenia associated with metformin in a patient with splenic marginal zone lymphoma[J]. Pharm World Sci, 2008, 30(4): 319-321. DOI: 10.1007/s11096-008-9218-3. doi:10.1007/s11096-008-9218-3pmid:18392686 |
[1] | 李佳璇, 封颖璐.糖皮质激素受体在肝癌细胞生长中的作用机制[J]. 国际肿瘤学杂志, 2023, 50(4): 241-243. |
[2] | 宁婷婷, 胡钦勇.二甲双胍在肿瘤免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(5): 292-295. |
[3] | 赵小玲, 孔为民.二甲双胍在子宫内膜癌中的基础与临床研究现状[J]. 国际肿瘤学杂志, 2020, 47(7): 440-443. |
[4] | 王雪, 纪国欣, 纪超, 杨兴升.二甲双胍对合并2型糖尿病的Ⅰ型子宫内膜癌患者预后的影响[J]. 国际肿瘤学杂志, 2020, 47(7): 404-408. |
[5] | 郜辉,易善永,杨斌,马西文,赵玲.二甲双胍抗肿瘤机制及其对靶向药物疗效的影响[J]. 国际肿瘤学杂志, 2018, 45(12): 747-750. |
[6] | 谢泽军, 唐玥, 周静, 邓敬桓, 何敏, 卢国栋.二甲双胍联合2-脱氧-D-葡萄糖对肝癌细胞增殖与凋亡的影响及其机制[J]. 国际肿瘤学杂志, 2017, 44(2): 81-85. |
[7] | 张相民,刘联斌,曾汶,周茂华,叶桂林,叶永强,王刚,李韶今.AMPK过表达慢病毒载体的构建及稳定转染肺癌A549细胞株的建立[J]. 国际肿瘤学杂志, 2017, 44(10): 721-726. |
[8] | 杨利波, 吕小红, 武顺, 岳峰, 张铁.微小RNA在二甲双胍抗肿瘤机制中的作用[J]. 国际肿瘤学杂志, 2016, 43(8): 681-683. |
[9] | 赵晓彤, 陈明卫.二甲双胍与结直肠癌[J]. 国际肿瘤学杂志, 2016, 43(7): 541-544. |
[10] | 高君蓉, 张倜, 曹曼卿, 张雪君, 朱晓琳.二甲双胍抗肿瘤及调控HIF-1α的作用[J]. 国际肿瘤学杂志, 2016, 43(2): 113-. |
[11] | 郭延勋;马士崟.二甲双胍的抗肿瘤作用[J]. 国际肿瘤学杂志, 2015, 42(4): 281-283. |
[12] | 蒋蓓琦, 庄志刚.二甲双胍在乳腺癌中抗肿瘤作用研究进展[J]. 国际肿瘤学杂志, 2012, 39(11): 844-847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||