国际肿瘤学杂志››2023,Vol. 50››Issue (10): 627-630.doi:10.3760/cma.j.cn371439-20230616-00119
闫学敏1, 武霄勇2, 张佳谊2, 文锦旭2, 王跃欣2()
收稿日期:
2023-06-16修回日期:
2023-09-07出版日期:
2023-10-08发布日期:
2023-11-08通讯作者:
王跃欣 E-mail:wangyx886@sina.comYan Xuemin1, Wu Xiaoyong2, Zhang Jiayi2, Wen Jinxu2, Wang Yuexin2()
Received:
2023-06-16Revised:
2023-09-07Online:
2023-10-08Published:
2023-11-08Contact:
Wang Yuexin E-mail:wangyx886@sina.com摘要:
长非编码RNA(lncRNA)是一种不编码表达蛋白质的RNA分子,在多种肿瘤的发生、发展中发挥着重要作用。SPRY4-IT1作为一种lncRNA,在乳腺癌组织中高表达,可作为乳腺癌上下游调控因子,促进乳腺癌的进展并与乳腺癌分期及预后密切相关。深入研究SPRY4-IT1与乳腺癌的相关分子机制,可为发现乳腺癌早期诊断生物标志物、评估疾病预后和寻找靶向位点提供新的思路。
闫学敏, 武霄勇, 张佳谊, 文锦旭, 王跃欣. SPRY4-IT1与乳腺癌[J]. 国际肿瘤学杂志, 2023, 50(10): 627-630.
Yan Xuemin, Wu Xiaoyong, Zhang Jiayi, Wen Jinxu, Wang Yuexin. SPRY4-IT1 and breast cancer[J]. Journal of International Oncology, 2023, 50(10): 627-630.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3): 209-249. DOI:10.3322/caac.21660. |
[2] | Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J].Breast,2022,66: 15-23. DOI:10.1016/j.breast.2022.08.010. pmid:36084384 |
[3] | 朱军, 黄美金, 李媛, 等. HER2低表达乳腺癌的靶向治疗研究进展[J].国际肿瘤学杂志,2023,50(4): 236-240. DOI:10.3760/cma.j.cn371439-20221230-00046. |
[4] | Lee J. Current treatment landscape for early triple-negative breast cancer (TNBC)[J].J Clin Med,2023,12(4): 1524. DOI:10.3390/jcm12041524. |
[5] | Ren Z, Xue Y, Liu L, et al. Tissue factor overexpression in triple-negative breast cancer promotes immune evasion by impeding T-cell infiltration and effector function[J].Cancer Lett,2023,565: 216221. DOI:10.1016/j.canlet.2023.216221. |
[6] | Qian X, Zhao J, Yeung PY, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J].Trends Biochem Sci,2019,44(1): 33-52. DOI:10.1016/j.tibs.2018.09.012. pmid:30459069 |
[7] | Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA loca-lization and function[J].J Cell Biol,2021,220(2): e202009045. DOI:10.1083/jcb.202009045. |
[8] | Abd-Elmawla MA, Hassan M, Elsabagh YA, et al. Deregulation of long noncoding RNAs ANCR, TINCR, HOTTIP and SPRY4-IT1 in plasma of systemic sclerosis patients: SPRY4-IT1 as a novel biomarker of scleroderma and its subtypes[J].Cytokine,2020,133: 155124. DOI:10.1016/j.cyto.2020.155124. |
[9] | Fan MJ, Zou YH, He PJ, et al. Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis[J].Biosci Rep,2019,39(6): BSR20181339. DOI:10.1042/BSR20181339. |
[10] | Cao S, Lin L, Xia X, et al. lncRNA SPRY4-IT1 regulates cell proliferation and migration by sponging miR-101-3p and regulating AMPK expression in gastric cancer[J].Mol Ther Nucleic Acids,2019,17: 455-464. DOI:10.1016/j.omtn.2019.04.030. |
[11] | Ghafouri-Fard S, Khoshbakht T, Taheri M, et al. A review on the role of SPRY4-IT1 in the carcinogenesis[J].Front Oncol,2021,11: 779483. DOI:10.3389/fonc.2021.779483. |
[12] | Safa A, Gholipour M, Dinger ME, et al. The critical roles of lncRNAs in the pathogenesis of melanoma[J].Exp Mol Pathol,2020,117: 104558. DOI:10.1016/j.yexmp.2020.104558. |
[13] | Ma W, Chen X, Wu X, et al. Long noncoding RNA SPRY4-IT1 promotes proliferation and metastasis of hepatocellular carcinoma via mediating TNF signaling pathway[J].J Cell Physiol,2020,235(11): 7849-7862. DOI:10.1002/jcp.29438. pmid:31943198 |
[14] | Li Z, Shen J, Chan MTV, et al. The long non-coding RNA SPRY4-IT1: an emerging player in tumorigenesis and osteosarcoma[J].Cell Prolif,2018,51(4): e12446. DOI:10.1111/cpr.12446. |
[15] | Xiang Y, Chen Y, Shi Y, et al. Upregulation of the long non-coding RNA SPRY4-IT1 predicts poor prognosis in breast cancer[J].Int J Clin Exp Pathol,2019,12(3): 1003-1008. |
[16] | 王焱, 仰大贵, 杨令芝. 乳腺癌组织SPRY4-IT1表达水平及其对患者远期生存的预测价值[J].华中科技大学学报(医学版),2019,48(1): 93-97. DOI:10.3870/j.issn.1672-0741.2019.01.018. |
[17] | Mohebi M, Sattari A, Ghafouri-Fard S, et al. Expression profiling revealed up-regulation of three lncRNAs in breast cancer samples[J].Exp Mol Pathol,2020,117: 104544. DOI:10.1016/j.yexmp.2020.104544. |
[18] | Zhang Y, Chen H, Yuan R, et al. PDK1-stabilized lncRNA SPRY4-IT1 promotes breast cancer progression via activating NF-κB signaling pathway[J].Mol Carcinog,2023,62(7): 1009-1024. DOI:10.1002/mc.23542. |
[19] | Hassine S, Bonnet-Magnaval F, Benoit Bouvrette LP, et al. Staufen1 localizes to the mitotic spindle and controls the localization of RNA populations to the spindle[J].J Cell Sci,2020,133(14): jcs247155. DOI:10.1242/jcs.247155. |
[20] | Zhao L, Jiang L, Zhang M, et al. NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay[J].Oncogene,2021,40(30): 4919-4929. DOI:10.1038/s41388-021-01900-8. pmid:34163032 |
[21] | Wang HF, Dong ZY, Yan L, et al. The N-terminal polypeptide derived from vMIP-Ⅱ exerts its antitumor activity in human breast cancer through CXCR4/miR-7-5p/Skp2 pathway[J].J Cell Physiol,2020,235(12): 9474-9486. DOI:10.1002/jcp.29755. |
[22] | Yang QL, Zhang LY, Wang HF, et al. The N-terminal polypeptide derived from viral macrophage inflammatory protein Ⅱ reverses breast cancer epithelial-to-mesenchymal transition via a PDGFRα-dependent mechanism[J].Oncotarget,2017,8(23): 37448-37463. DOI:10.18632/oncotarget.16394. |
[23] | Wu H, Wang Y, Chen T, et al. The N-terminal polypeptide derived from vMIP-Ⅱ exerts its anti-tumor activity in human breast cancer by regulating lncRNA SPRY4-IT1[J].Biosci Rep,2018,38(5): BSR20180411. DOI:10.1042/BSR20180411. |
[24] | Shi Y, Li J, Liu Y, et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression[J].Mol Cancer,2015,14: 51. DOI:10.1186/s12943-015-0318-0. pmid:25742952 |
[25] | Zhang X, Mu X, Huang O, et al. ZNF703 promotes triple-negative breast cancer cells through cell-cycle signaling and associated with poor prognosis[J].BMC Cancer,2022,22(1): 226. DOI:10.1186/s12885-022-09286-w. pmid:35236318 |
[26] | Song X, Zhang X, Wang X, et al. LncRNA SPRY4-IT1 regulates breast cancer cell stemness through competitively binding miR-6882-3p with TCF7L2[J].J Cell Mol Med,2020,24(1): 772-784. DOI:10.1111/jcmm.14786. pmid:31736268 |
[27] | Zheng A, Zhang L, Song X, et al. Clinical significance of SPRY4-IT1 in efficacy and survival prediction in breast cancer patients undergoing neoadjuvant chemotherapy[J].Histol Histopathol,2020,35(4): 361-370. DOI:10.14670/HH-18-175. pmid:31638266 |
[28] | El-Helkan B, Emam M, Mohanad M, et al. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women[J].Sci Rep,2022,12(1): 19498. DOI:10.1038/s41598-022-23938-8. pmid:36376369 |
[29] | Qin X, Yin Q, Gao J, et al. Prognostic role of SPRY4-IT1 in female breast carcinoma and malignant tumors of the reproductive system: a meta-analysis[J].Medicine (Baltimore),2022,101(16): e28969. DOI:10.1097/MD.0000000000028969. |
[30] | Wang HM, Li HJ, Chen JZ, et al. Prognostic value of long nonco-ding RNA SPRY4-IT1 on survival outcomes in human carcinomas: a systematic review and meta-analysis with TCGA database[J].Biomed Res Int,2020,2020: 5868602. DOI:10.1155/2020/5868602. |
[31] | Pourramezan Z, Attar FA, Yusefpour M, et al. Circulating lncRNAs landscape as potential biomarkers in breast cancer[J].Cancer Rep (Hoboken),2023,6(2): e1722. DOI:10.1002/cnr2.1722. |
[32] | Wasson MD, Brown JM, Venkatesh J, et al. Datasets exploring putative lncRNA-miRNA-mRNA axes in breast cancer cell lines[J].Data Brief,2021,37: 107241. DOI:10.1016/j.dib.2021.107241. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 陈波光, 王苏贵, 张永杰.血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[5] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[6] | 王景, 许文婷.中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[7] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英.HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[8] | 柳洋, 蒋路路, 管凯文, 周岳阳, 康小红.linc01410在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(9): 540-543. |
[9] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰.miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[10] | 王文德, 曾德.乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[11] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[12] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳.沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. |
[13] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏.HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[14] | 周婷, 徐少华, 梅林.贝伐珠单抗联合卡培他滨治疗晚期乳腺癌的有效性及安全性[J]. 国际肿瘤学杂志, 2023, 50(3): 144-149. |
[15] | 拜莹, 李琦, 李亚芹, 赵卫红.E2F1与lncRNA在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 164-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||