国际肿瘤学杂志››2024,Vol. 51››Issue (7): 417-423.doi:10.3760/cma.j.cn371439-20240621-00069
收稿日期:
2024-06-21修回日期:
2024-06-25出版日期:
2024-07-08发布日期:
2024-08-14通讯作者:
陆嘉德,Email:lujiade@hyhospital.comReceived:
2024-06-21Revised:
2024-06-25Online:
2024-07-08Published:
2024-08-14Contact:
Lu Jiade, Email:lujiade@hyhospital.com摘要:
粒子射线放疗(PBRT)是基于质子和重离子(目前临床以碳离子为主)射线的放疗技术,通过扩展Bragg峰实现卓越的剂量分布,实现靶向肿瘤部位并保护周围正常组织,从而提供精准的肿瘤治疗。在生物效应方面,质子射线的相对生物效应(RBE)为1.1,略高于光子射线;而碳离子为高传能线密度射线,RBE一般为2~3,针对放射抗性和乏氧肿瘤更具优势。PBRT临床应用包括单线束放疗和混合线束放疗,后者综合不同粒子的优势,是肿瘤治疗研究的重要方向。目前PBRT仍面临着众多挑战,技术上如运动靶区、剂量的不确定性,因此需要呼吸门控和自适应计划等先进技术;临床上,有限的随机对照试验(RCT)限制了PBRT的临床验证。现有的RCT研究,如美国MD安德森癌症中心的研究,虽观察到PBRT的获益,但也表明仍需进一步研究来确认其长期疗效和安全性。未来的研究除将PBRT与光子治疗进行比较外,还应探索将PBRT与免疫治疗等全身治疗相结合的治疗获益。回顾PBRT的临床实践和研究概况,并进一步讨论其在肿瘤治疗中的成本效益,有助于为读者提供全面的理解,推动PBRT在肿瘤治疗中的发展和应用。
孔琳, 陆嘉德. 突破与挑战:恶性肿瘤质子重离子放疗的临床应用与进展[J]. 国际肿瘤学杂志, 2024, 51(7): 417-423.
Kong Lin, Lu Jiade. Breakthroughs and challenges: clinical application and progress of proton and heavy ion radiotherapy for malignant tumors[J]. Journal of International Oncology, 2024, 51(7): 417-423.
[1] | Loeffler JS, Durante M. Charged particle therapy—optimization, challenges and future directions[J].Nat Rev Clin Oncol,2013,10(7): 411-424. DOI:10.1038/nrclinonc.2013.79. pmid:23689752 |
[2] | Vai A, Molinelli S, Rossi E, et al. Proton radiation therapy for nasopharyngeal cancer patients: dosimetric and NTCP evaluation supporting clinical decision[J].Cancers (Basel),2022,14(5): 1109. DOI:10.3390/cancers14051109. |
[3] | Moreno AC, Frank SJ, Garden AS, et al. Intensity modulated proton therapy (IMPT)—the future of IMRT for head and neck cancer[J].Oral Oncol,2019,88: 66-74. DOI:10.1016/j.oraloncology.2018.11.015. pmid:30616799 |
[4] | Doyen J, Falk AT, Floquet V, et al. Proton beams in cancer treatments: clinical outcomes and dosimetric comparisons with photon therapy[J].Cancer Treat Rev,2016,43: 104-112. DOI:10.1016/j.ctrv.2015.12.007. pmid:26827698 |
[5] | Ma N, Ming X, Chen J, et al. Dosimetric rationale and preliminary experience in proton plus carbon-ion radiotherapy for esophageal carcinoma: a retrospective analysis[J].Radiat Oncol,2023,18(1): 195. DOI:10.1186/s13014-023-02371-9. pmid:38041122 |
[6] | Huang H, Gao X, Li Q, et al. Dosimetric comparison between stereotactic body radiotherapy and carbon-ion radiation therapy for prostate cancer[J].Quant Imaging Med Surg,2023,13(10): 6965-6978. DOI:10.21037/qims-23-340. |
[7] | Byun HK, Han MC, Yang K, et al. Physical and biological characteristics of particle therapy for oncologists[J].Cancer Res Treat,2021,53(3): 611-620. DOI:10.4143/crt.2021.066. pmid:34139805 |
[8] | Engwall E, Glimelius L, Hynning E. Effectiveness of different rescanning techniques for scanned proton radiotherapy in lung cancer patients[J].Phys Med Biol,2018,63(9): 095006. DOI:10.1088/1361-6560/aabb7b. |
[9] | Paganetti H, Botas P, Sharp GC, et al. Adaptive proton therapy[J].Phys Med Biol,2021,66(22): 10. DOI:10.1088/1361-6560/ac344f. |
[10] | Hagiwara Y, Bhattacharyya T, Matsufuji N, et al. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer[J].Clin Transl Radiat Oncol,2019,21: 19-24. DOI:10.1016/j.ctro.2019.11.002. |
[11] | Matsumoto S, Lee SH, Imai R, et al. Unresectable chondrosarcomas treated with carbon ion radiotherapy: relationship between dose-averaged linear energy transfer and local recurrence[J].Anticancer Res,2020,40(11): 6429-6435. DOI:10.21873/anticanres.14664. pmid:33109581 |
[12] | Molinelli S, Magro G, Mairani A, et al. How LEM-based RBE and dose-averaged LET affected clinical outcomes of sacral chordoma patients treated with carbon ion radiotherapy[J].Radiother Oncol,2021,163: 209-214. DOI:10.1016/j.radonc.2021.08.024. pmid:34506829 |
[13] | Bassler N, Jäkel O, Søndergaard CS, et al. Dose-and LET-painting with particle therapy[J].Acta Oncol,2010,49(7): 1170-1176. DOI:10.3109/0284186X.2010.510640. pmid:20831510 |
[14] | Malinen E, Søvik Å. Dose or 'LET' painting—what is optimal in particle therapy of hypoxic tumors?[J].Acta Oncol,2015,54(9): 1614-1622. DOI:10.3109/0284186X.2015.1062540. pmid:26198655 |
[15] | Hu J, Huang Q, Gao J, et al. Mixed photon and carbon-ion beam radiotherapy in the management of non-metastatic nasopharyngeal carcinoma[J].Front Oncol,2021,11: 653050. DOI:10.3389/fonc.2021.653050. |
[16] | Liao Z, Lee JJ, Komaki R, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer[J].J Clin Oncol,2018,36(18): 1813-1822. DOI:10.1200/JCO.2017.74.0720. pmid:29293386 |
[17] | Frank SJ, Busse P, Rosenthal DI, et al. Phase Ⅲ randomized trial of intensity-modulated proton therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for the treatment of head and neck oropharyngeal carcinoma (OPC)[J].J Clin Oncol,2024,42(16 Suppl): 6006. DOI:10.1200/JCO.2024.42.16_suppl.6006. |
[18] | Sokol O, Durante M. Carbon ions for hypoxic tumors: are we making the most of them?[J].Cancers (Basel),2023,15(18): 4494. DOI:10.3390/cancers15184494. |
[19] | Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy[J].Strahlenther Onkol,2023,199(12): 1225-1241. DOI:10.1007/s00066-023-02158-7. pmid:37872399 |
[20] | Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, et al. Immunological mechanisms responsible for radiation-induced abscopal effect[J].Trends Immunol,2018,39(8): 644-655. DOI:10.1016/j.it.2018.06.001. pmid:30001871 |
[21] | Ngwa W, Irabor OC, Schoenfeld JD, et al. Using immunotherapy to boost the abscopal effect[J].Nat Rev Cancer,2018,18(5): 313-322. DOI:10.1038/nrc.2018.6. pmid:29449659 |
[22] | Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment[J].Signal Transduct Target Ther,2022,7(1): 258. DOI:10.1038/s41392-022-01102-y. |
[23] | Takahashi Y, Yasui T, Minami K, et al. Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma[J].Oncotarget,2019,10(6): 633-646. DOI:10.18632/oncotarget.26551. pmid:30774761 |
[24] | Helm A, Tinganelli W, Simoniello P, et al. Reduction of lung metastases in a mouse osteosarcoma model treated with carbon ions and immune checkpoint inhibitors[J].Int J Radiat Oncol Biol Phys,2021,109(2): 594-602. DOI:10.1016/j.ijrobp.2020.09.041. |
[25] | Nie M, Chen L, Zhang J, et al. Pure proton therapy for skull base chordomas and chondrosarcomas: a systematic review of clinical experience[J].Front Oncol,2022: 1016857. DOI:10.3389/fonc.2022.1016857. |
[26] | Guan X, Gao J, Hu J, et al. The preliminary results of proton and carbon ion therapy for chordoma and chondrosarcoma of the skull base and cervical spine[J].Radiat Oncol,2019,14(1): 206. DOI:10.1186/s13014-019-1407-9. pmid:31752953 |
[27] | Ioakeim-Ioannidou M, Niemierko A, Kim DW, et al. Surgery and proton radiation therapy for pediatric base of skull chordomas: long-term clinical outcomes for 204 patients[J].Neuro Oncol,2023,25(9): 1686-1697. DOI:10.1093/neuonc/noad068. |
[28] | Hu J, Huang Q, Gao J, et al. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma[J].Cancer,2020,126(23): 5173-5183. DOI:10.1002/cncr.33197. |
[29] | Greenberger BA, Yock TI. The role of proton therapy in pediatric malignancies: recent advances and future directions[J].Semin Oncol,2020,47(1): 8-22. DOI:10.1053/j.seminoncol.2020.02.002. pmid:32139101 |
[30] | Mohan R, Grosshans D. Proton therapy-present and future[J].Adv Drug Deliv Rev,2017,109: 26-44. DOI:10.1016/j.addr.2016.11.006. |
[31] | Verma V, Mishra MV, Mehta MP. A systematic review of the cost and cost-effectiveness studies of proton radiotherapy[J].Cancer,2016,122(10): 1483-1501. DOI:10.1002/cncr.29882. pmid:26828647 |
[32] | Mailhot Vega RB, Ishaq O, Raldow A, et al. Establishing cost-effective allocation of proton therapy for breast irradiation[J].Int J Radiat Oncol Biol Phys,2016,95(1): 11-18. DOI:10.1016/j.ijrobp.2016.02.031. |
[33] | Mutter RW, Choi JI, Jimenez RB, et al. Proton therapy for breast cancer: a consensus statement from the particle therapy cooperative group breast cancer subcommittee[J].Int J Radiat Oncol Biol Phys,2021,111(2): 337-359. DOI:10.1016/j.ijrobp.2021.05.110. |
[1] | Saber Amin, Chi Lin.质子束放疗在中枢神经系统肿瘤患者中的应用趋势:美国国家癌症数据库分析(2004—2021年)[J]. 国际肿瘤学杂志, 2024, 51(7): 424-431. |
[2] | 于新生, 任磊, 卢晓光.现代质子放疗和光子放疗的争论与思考[J]. 国际肿瘤学杂志, 2024, 51(7): 411-416. |
[3] | 牛瑞琪, 刘萍萍, 杜瀛瀛.早期非小细胞肺癌术后微小残留病灶检测技术与应用进展[J]. 国际肿瘤学杂志, 2022, 49(10): 623-626. |
[4] | 王孟超, 陈立伟, 孔凡铭.戈沙妥珠单抗治疗三阴性乳腺癌的研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 619-622. |
[5] | 李钰祥, 王新文.干扰素治疗肿瘤相关的信号通路及临床应用[J]. 国际肿瘤学杂志, 2020, 47(6): 364-367. |
[6] | 王姗, 李萍, 张芮, 韩江龙, 胡钦勇, 付振明.重离子治疗肿瘤的临床研究进展[J]. 国际肿瘤学杂志, 2020, 47(12): 741-745. |
[7] | 李倩, 周金. 碳离子放疗的优势及其在肿瘤治疗中的应用[J]. 国际肿瘤学杂志, 2019, 46(10): 609-612. |
[8] | 栗辰,黄焰.乳腺癌BRCA1、BRCA2基因突变及其临床应用[J]. 国际肿瘤学杂志, 2015, 42(2): 138-140. |
[9] | 孙娜, 杨文燕.洛铂治疗肿瘤的研究进展[J]. 国际肿瘤学杂志, 2012, 39(12): 907-909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||