国际肿瘤学杂志››2019,Vol. 46››Issue (5): 299-302.doi:10.3760/cma.j.issn.1673-422X.2019.05.010
顾思佳1,孙国壮2,乔大伟3,仲毅1,孔桂美2,卜平3
收稿日期:
2019-04-16出版日期:
2019-05-08发布日期:
2019-06-14通讯作者:
卜平 E-mail:boping@yzu.edu.cn基金资助:
国家自然科学基金(81673736);江苏省研究生科研与实践创新计划(SJCX18_0808)
Gu Sijia1, Sun Guozhuang2, Qiao Dawei3, Zhong Yi1, Kong Guimei2, Bu Ping3
Received:
2019-04-16Online:
2019-05-08Published:
2019-06-14Contact:
Bu Ping E-mail:boping@yzu.edu.cnSupported by:
National Natural Science Foundation of China (81673736); Graduate Student Scientific Research Innovation Project of Jiangsu Province of China (SJCX18_0808)
摘要:Hippo信号通路在结直肠癌发生发展中具有重要作用,是调控细胞增殖和分化的重要信号通路。Hippo信号通路中多种蛋白和基因尤其是下游的YAP在结直肠癌的发生、转移、耐药、复发中发挥重要作用。YAP及相关基因可作为预测结直肠癌放化疗药物耐药性的靶向标志物。针对Hippo信号通路基因网络的靶向治疗与联合用药为治疗结直肠癌提供了新的思路。
顾思佳,孙国壮,乔大伟,仲毅,孔桂美,卜平. Hippo信号通路与结直肠癌[J]. 国际肿瘤学杂志, 2019, 46(5): 299-302.
Gu Sijia, Sun Guozhuang, Qiao Dawei, Zhong Yi, Kong Guimei, Bu Ping. Hippo signaling pathway and colorectal cancer[J]. Journal of International Oncology, 2019, 46(5): 299-302.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492. [2] Zhang L, Cao F, Zhang G, et al. Trends in and predictions of colorectal cancer incidence and mortality in China from 1990 to 2025[R]. Front Oncol, 2019, 9: 98. DOI: 10.3389/fonc.2019.00098. [3] Plouffe SW, Lin KC, Moore JL, et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell[J]. J Biol Chem, 2018, 293(28): 11230-11240. DOI: 10.1074/jbc.RA118.002715. [4] Frankel NW, Lim WA. Building a stable relationship: Ensuring homeostasis among cell types within a tissue[J]. Cell, 2018, 172(4): 638-640. DOI: 10.1016/j.cell.2018.01.024. [5] Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration[J]. Exp Mol Med, 2018, 50(1): e423. DOI: 10.1038/emm.2017.205. [6] Moon S, Yeon Park S, Woo Park H. Regulation of the Hippo pathway in cancer biology[J]. Cell Mol Life Sci, 2018, 75(13): 2303-2319. DOI: 10.1007/s00018-018-2804-1. [7] Fang L, Teng H, Wang Y, et al. SET1Amediated monomethylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis[J]. Cancer Cell, 2018, 34(1): 103-118. DOI: 10.1016/j.ccell.2018.06.002. [8] Wang F, Wang B, Long J, et al. Identification of candidate target genes for endometrial cancer, such as ANO1, using weighted gene co expression network analysis[J]. Exp Ther Med, 2019, 17(1): 298-306. DOI: 10.3892/etm.2018.6965. [9] Dehghanian F, Hojati Z, Hosseinkhan N, et al. Reconstruction of the genomescale coexpression network for the Hippo signaling pathway in colorectal cancer[J]. Comput Biol Med, 2018, 99: 76-84. DOI: 10.1016/j.compbiomed.2018.05.023. [10] Gibault F, Sturbaut M, Bailly F, et al. Targeting transcriptional enhanced associate domains (TEADs)[J]. J Med Chem, 2018, 61(12): 5057-5072. DOI: 10.1021/acs.jmedchem.7b00879. [11] Wang X, Sun D, Tai J, et al. TFAP2C promotes stemness and chemotherapeutic resistance in colorectal cancer via inactivating hippo signaling pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 27. DOI: 10.1186/s13046-018-0683-9. [12] Ou C, Sun Z, Li S, et al. Dual roles of yesassociated protein (YAP) in colorectal cancer[J]. Oncotarget, 2017, 8(43): 75727-75741. DOI: 10.18632/oncotarget.20155. [13] Poma AM, Torregrossa L, Bruno R, et al. Hippo pathway affects survival of cancer patients: extensive analysis of TCGA data and review of literature[J]. Sci Rep, 2018, 8(1): 10623. DOI: 10.1038/s41598-018-28928-3. [14] Zhang S, Wei Q, Yang Y, et al. Loss of Yesassociated protein represents an aggressive subtype of colorectal cancer[J]. J Cancer, 2019, 10(3): 689-696. DOI: 10.7150/jca.28333. [15] Zhou Z, Zhang HS, Zhang ZG, et al. Loss of HACE1 promotes colorectal cancer cell migration via upregulation of YAP1[J]. J Cell Physiol, 2019, 234(6): 9663-9672. DOI: 10.1002/jcp.27653. [16] Pan Y, Tong JHM, Lung RWM, et al. RASAL2 promotes tumor progression through LATS2/YAP1 axis of hippo signaling pathway in colorectal cancer[J]. Mol Cancer, 2018, 17(1): 102. DOI: 10.1186/s12943-018-0853-6. [17] Wang Q, Gao X, Yu T, et al. REGγ controls Hippo signaling and reciprocal NF-κB YAP regulation to promote colon cancer[J]. Clin Cancer Res, 2018, 24(8): 2015-2025. DOI: 10.1158/1078-0432.CCR-17-2986. [18] Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants for colorectal cancer[J]. Nat Genet, 2019, 51(1): 76-87. DOI: 10.1038/s41588-018-0286-6. [19] Yang C, Xu W, Meng X, et al. SCC-S2 facilitates tumor proliferation and invasion via activating Wnt signaling and depressing Hippo signaling in colorectal cancer cells and predicts poor prognosis of patients[J]. J Histochem Cytochem, 2019, 67(1): 65-75. DOI: 10.1369/0022155418799957. [20] Yao P, Li Y, Shen W, et al. ANKHD1 silencing suppresses the proliferation, migration and invasion of CRC cells by inhibiting YAP1-induced activation of EMT[J]. Am J Cancer Res, 2018, 8(11): 2311-2324. [21] Eskandari E, Mahjoubi F, Motalebzadeh J. An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers[J]. Gene, 2018, 679: 150-159. DOI: 10.1016/j.gene.2018.09.003. [22] Song R, Gu D, Zhang L, et al. Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer[J]. Mol Carcinog, 2018, 57(11): 1608-1615. DOI: 10.1002/mc.22883. [23] Liu BS, Xia HW, Zhou S, et al. Inhibition of YAP reverses primary resistance to EGFR inhibitors in colorectal cancer cells[J]. Oncol Rep, 2018, 40(4): 2171-2182. DOI: 10.3892/or.2018.6630. [24] Yu M, Luo Y, Cong Z, et al. MicroRNA-590-5p inhibits intestinal inflammation by targeting YAP[J]. J Crohns Colitis, 2018, 12(8): 993-1004. DOI: 10.1093/ecco-jcc/jjy046. [25] Shen X, Sun X, Sun B, et al. ARRDC3 suppresses colorectal cancer progression through destabilizing the oncoprotein YAP[J]. FEBS Lett, 2018, 592(4): 599-609. DOI: 10.1002/1873-3468.12986. [26] Greenhough A, Bagley C, Heesom KJ, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis[J]. EMBO Mol Med, 2018, 10(11). pii: e8699. DOI: 10.15252/emmm.201708699. [27] Li Q, Qi F, Meng X, et al. Mst1 regulates colorectal cancer stress response via inhibiting Bnip3related mitophagy by activation of JNK/p53 pathway[J]. Cell Biol Toxicol, 2018, 34(4): 263-277. DOI: 10.1007/s10565-017-9417-6. [28] Deng X, Fang L. VGLL4 is a transcriptional cofactor acting as a novel tumor suppressor via interacting with TEADs[J]. Am J Cancer Res, 2018, 8(6): 932-943. [29] Toden S, Ravindranathan P, Gu J, et al. Oligomeric proanthocyanidins (OPCs) target cancer stemlike cells and suppress tumor organoid formation in colorectal cancer[J]. Sci Rep, 2018, 8(1): 3335. DOI: 10.1038/s41598-018-21478-8. [30] Unterer B, Wiesmann V, Gunasekaran M, et al. IFN-γ-response mediator GBP-1 represses human cell proliferation by inhibiting the Hippo signaling transcription factor TEAD[J]. Biochem J, 2018, 475(18): 2955-2967. DOI: 10.1042/BCJ20180123. [31] Theodosakis N, Langdon CG, Micevic G, et al. Inhibition of isoprenylation synergizes with MAPK blockade to prevent growth in treatment resistant melanoma, colorectal, and lung cancer[J]. Pigment Cell Melanoma Res, 2019, 32(2): 292-302. DOI: 10.1111/pcmr.12742. [32] Qian J, Fang D, Lu H, et al. Tanshinone ⅡA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1Hippo pathway[J]. Biomed Pharmacother, 2018, 108: 1658-1669. DOI: 10.1016/j.biopha.2018.09.170. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[3] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[4] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[5] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[6] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[7] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[8] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[9] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[10] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[11] | 刘德宝, 孙子雯, 鲁守堂, 徐海东.ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[12] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[13] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[14] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[15] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||