国际肿瘤学杂志››2014,Vol. 41››Issue (11): 854-857.doi:10.3760/cma.j.issn.1673-422X.2014.11.017
出版日期:
2014-12-03发布日期:
2015-01-20通讯作者:
杨庆诚,Email:tjyqc@163.com
Online:
2014-12-03Published:
2015-01-20Contact:
Yang Qingcheng, Email: tjyqc@163.com摘要:目前骨转移癌的治疗手段相当有限,且疗效不显著。骨转移癌靶向治疗研究是当前的热点,同时也是难点。对骨微环境中成骨细胞、破骨细胞及肿瘤细胞等相互关系的最新研究成果,可为临床上治疗骨转移癌提供新的思路和方法。
杨接来, 杨庆诚. 骨转移癌微环境与治疗靶点[J]. 国际肿瘤学杂志, 2014, 41(11): 854-857.
YANG Jie-Lai, YANG Qing-Cheng. Microenvironment and therapeutic targets of metastatic bone cancer[J]. Journal of International Oncology, 2014, 41(11): 854-857.
[1] Suva LJ, Washam C, Nicholas RW, et al. Bone metastasis: mechanisms and therapeutic opportunities[J]. Nat Rev Endocrinol, 2011, 7(4): 208218. [2] Duda DG, Jain RK. Premetastatic lung "niche": is vascular endothelial growth factor receptor 1 activation required?[J]. Cancer Res, 2010, 70(14):56705673. [2] Cupp ME, Nayak SK, Adem AS, et al. Parathyroid hormone (PTH) and PTHrelated peptide domains contributing to activation of different PTH receptormediated signaling pathways[J]. J Pharmacol Exp Ther, 2013, 345(3):404418. [3] Christopher MJ, Liu F, Hilton MJ, et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokineinduced mobilization[J]. Blood , 2009, 114(7):13311339. [4] Shiozawa Y, Pedersen EA, Havens AM, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow[J]. J Clin Invest, 2011, 121(4):12981312. [5] Lu X, Wang Q, Hu G, et al. ADAMTS1 and MMP1 proteolytically engage EGFlike ligands in an osteolytic signaling cascade for bone metastasis[J]. Genes Dev, 2009, 23(16):18821894. [6] Nannuru KC, Futakuchi M, Varney ML, et al. Matrix metalloproteinase (MMP)13 regulates mammary tumorinduced osteolysis by activating MMP9 and transforming growth factorbeta signaling at the tumorbone interface[J]. Cancer Res, 2010, 70(9):34943504. [7] Shevde LA, Das S, Clark DW, et al. Osteopontin: an effector and an effect of tumor metastasis[J]. Curr Mol Med, 2010, 10(1):7181. [8] Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression[J]. Nat Rev Cancer, 2010, 10(6):415424. [9] Dunn LK, Mohammad KS, Fournier PG, et al. Hypoxia and TGFbeta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment[J]. PLoS One, 2009, 4(9):e6896. [10] Korpal M, Yan J, Lu X, et al. Imaging transforming growth factorbeta signaling dynamics and therapeutic response in breast cancer bone metastasis[J]. Nat Med, 2009, 15(8):960966. [11] Ooi LL, Zhou H, Kalak R, et al. Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis[J]. Cancer Res, 2010, 70(5):18351844. [12] Body JJ, Lipton A, Gralow J, et al. Effects of denosumab in patients with bone metastases with and without previous bisphosphonate exposure[J]. J Bone Miner Res, 2010, 25(3):440446. [13] Aft R, Naughton M, Trinkaus K, et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial[J]. Lancet Oncol, 2010, 11(5):421428. [14] Hoffmann O, Aktas B, Goldnau C, et al. Effect of ibandronate on disseminated tumor cells in the bone marrow of patients with primary breast cancer: a pilot study[J]. Anticancer Res, 2011, 31(10):36233628. [15] Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, doubleblind study[J]. J Clin Oncol, 2010, 28(35):51325139. [16] GonzalezSuarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestininduced mammary epithelial proliferation and carcinogenesis[J]. Nature, 2010, 468(7320):103107. [17] Jensen AB, Wynne C, Ramirez G, et al. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4week, doubleblind, randomized, controlled trial[J]. Clin Breast Cancer, 2010, 10(6):452458. [18] Shepard DR, Dreicer R. Zibotentan for the treatment of castrateresistant prostate cancer[J]. Expert Opin Investigig Drugs, 2010, 19(7):899908. [19] Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100[J]. Blood, 2009, 113(24):62066214. [20] Azab AK, Runnels JM, Pitsillides C, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy[J]. Blood, 2009, 113(18):43414351. [21] Wang SH, Lin SY. Tumor dormancy: potential therapeutic target in tumor recurrence and metastasis prevention[J]. Exp Hematol Oncol, 2013, 2(1):2936. [22] Korpal M, Kang Y. Targeting the transforming growth factorbeta signalling pathway in metastatic cancer[J]. Eur J Cancer, 2010, 46(7):12321240. [23] Edwards JR, Nyman JS, Lwin ST, et al. Inhibition of TGFbeta signaling by 1D11 antibody treatment increases bone mass and quality in vivo[J]. J Bone Miner Res, 2010, 25(11):24192426. [24] Merz M, Komljenovic D, Zwick S, et al. Sorafenib tosylate and paclitaxel induce antiangiogenic, antitumour and antiresorptive effects in experimental breast cancer bone metastases[J]. Eur J Cancer, 2011, 47(2):277286. [25] Mellick AS, Plummer PN, Nolan DJ, et al. Using the transcription factor inhibitor of DNA binding 1 to selectively target endothelial progenitor cells offers novel strategies to inhibit tumor angiogenesis and growth[J]. Cancer Res, 2010, 70(18):72737282. [26] Li K, Dias SJ, Rimando AM, et al. Pterostilbene acts through metastasisassociated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer[J]. PLos One, 2013, 8(3):e57542. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[5] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[6] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[7] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[8] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[9] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英.免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[10] | 王婷, 李文倩, 解友邦.低氧与急性髓系白血病细胞氧感受通路的相关性[J]. 国际肿瘤学杂志, 2023, 50(8): 503-507. |
[11] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[12] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[13] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[14] | 刘利, 朱思齐, 孙梦颖, 何敬东.PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[15] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||