国际肿瘤学杂志››2017,Vol. 44››Issue (7): 526-530.doi:10.3760/cma.j.issn.1673422X.2017.07.012
王应海,张红平,俞晶,李春琳,卢义函
收稿日期:
2017-01-03出版日期:
2017-07-08发布日期:
2017-06-20通讯作者:
张红平 E-mail:kmzhp@126.com基金资助:
云南省科技厅昆明医科大学应用基础研究联合专项(201501UH00624)
Wang Yinghai, Zhang Hongping, Yu Jing, Li Chunlin, Lu Yihan
Received:
2017-01-03Online:
2017-07-08Published:
2017-06-20Contact:
Zhang Hongping E-mail:kmzhp@126.comSupported by:
Yunnan Provincial Science and Technology DepartmentKunming Medical University Applied Basic Research Joint Special Project (201501UH00624)
摘要:人乳头瘤病毒(HPV)持续感染是宫颈上皮内瘤变和宫颈癌发生的必要因素。以治疗HPV感染为出发点研制有效的治疗性疫苗是防治宫颈癌的新策略。近年来,治疗性HPV疫苗的研制与试验已取得了巨大的进步,载体的选择、佐剂的使用、融合和嵌合蛋白的合成被广泛应用于研究中,以增强疫苗免疫原性、加强接种安全性、减少不良反应等。临床试验结果令人鼓舞,各类疫苗能诱导特异性免疫应答,且具有良好的耐受性;但如何取得进一步的成功依然需要大量的研究。此外,HPV病毒种类繁多,如何扩大疫苗的作用范围及减少免疫逃逸也是研究的重点。
王应海,张红平,俞晶,李春琳,卢义函. 人乳头瘤病毒治疗性疫苗的研究进展[J]. 国际肿瘤学杂志, 2017, 44(7): 526-530.
Wang Yinghai, Zhang Hongping, Yu Jing, Li Chunlin, Lu Yihan. Advances of human papillomavirus therapeutic vaccine[J]. Journal of International Oncology, 2017, 44(7): 526-530.
[1] Wright JD, Chen L, Tergas AI, et al. Populationlevel trends in relative survival for cervical cancer[J]. Am J Obstet Gynecol, 2015, 213(5): 670, e1-7. DOI: 10.1016/j.ajog.2015.07.012. [2] Paunovic V, Konevic S, Paunovic T. Association of human papillomavirus infection with cytology, colposcopy, histopathology, and risk factors in the development of low and highgrade lesions of the cervix[J]. J BUON, 2016, 21(3): 659-665. [3] Diorio GJ, Giuliano AR. The role of human papilloma virus in penile carcinogenesis and preneoplastic lesions: a potential target for vaccination and treatment strategies[J]. Urol Clin North Am, 2016, 43(4): 419-425. DOI: 10.1016/j.ucl.2016.06.003. [4] Fan X, Liu Y, Heilman SA, et al. Human papillomavirus E7 induces rereplication in response to DNA damage[J]. J Virol, 2013, 87(2): 1200-1210. DOI: 10.1128/JVI.0203812. [5] Graham SV. Human papillomavirus E2 protein: linking replication, transcription, and RNA processing[J]. J Virol, 2016, 90(19): 8384-8388. DOI: 10.1128/JVI.0050216. [6] Wardak S. Human papillomavirus (HPV) and cervical cancer[J]. Med Dosw Mikrobiol, 2016, 68(1): 73-84. [7] Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age[J]. Nature, 2011, 480(7378): 480-489. DOI: 10.1038/nature10673. [8] Chen Z, Jing Y, Wen Q, et al. L1 and L2 gene polymorphisms in HPV58 and HPV33: implications for vaccine design and diagnosis[J]. Virol J, 2016, 13(1): 167. DOI: 10.1186/s1298501606299. [9] Herrero R, González P, Markowitz LE. Present status of human papillomavirus vaccine development and implementation[J]. Lancet Oncol, 2015, 16(5): e206-216. DOI: 10.1016/S14702045(14)704814. [10] Shahabi V, Maciag PC, Rivera S, et al. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment[J]. Bioeng Bugs, 2010, 1(4): 235-243. DOI: 10.4161/bbug.1.4.11243. [11] Maciag PC, Radulovic S, Rothman J. The first clinical use of a liveattenuated Listeria monocytogenes vaccine: a phase Ⅰ safety study of LmLLOE7 in patients with advanced carcinoma of the cervix[J]. Vaccine, 2009, 27(30): 3975-3983. DOI: 10.1016/j.vaccine.2009.04.041. [12] Cory L, Chu C. ADXSHPV: a therapeutic Listeria vaccination targeting cervical cancers expressing the HPV E7 antigen[J]. Hum Vaccin Immunother, 2014, 10(11): 3190-3195. DOI: 10.4161/hv.34378. [13] Petit RG, Mehta A, Jain M, et al. ADXS11001 immunotherapy targeting HPVE7: final results from a phase Ⅱ study in Indian women with recurrent cervical cancer[J]. J Immuno Thera Cancer, 2014, 2 Suppl 3: P92. DOI: 10.1186/2051-1426-2-S3-P92. [14] Sun YY, Peng S, Han L, et al. Local HPV recombinant vaccinia boost following priming with an HPV DNA vaccine enhances local HPVspecific CD8+ Tcellmediated tumor control in the genital tract[J]. Clin Cancer Res, 2016, 22(3): 657-669. DOI: 10.1158/1078-0432.CCR-15-0234. [15] Lee SY, Kang TH, Knoff J, et al. Intratumoral injection of therapeutic HPV vaccinia vaccine following cisplatin enhances HPVspecific antitumor effects[J]. Cancer Immunol Immunother, 2013, 62(7): 11751185. DOI: 10.1007/s002620131421y. [16] Rosales R, LópezContreras M, Rosales C, et al. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine[J]. Hum Gene Ther, 2014, 25(12): 1035-1049. DOI: 10.1089/hum.2014.024. [17] Brun JL, Dalstein V, Leveque J, et al. Regression of highgrade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy[J]. Am J Obstet Gynecol, 2011, 204(2): 169, e1-8. DOI: 10.1016/j.ajog.2010.09.020. [18] Xiao J, Zhou J, Fu M, et al. Efficacy of recombinant human adenovirusp53 combined with chemotherapy for locally advanced cervical cancer: a clinical trial[J]. Oncology Letters, 2017, 13: 3676-3680. DOI: 10.3892/ol.2017.5901. [19] Yang B, Jeang J, Yang A, et al. DNA vaccine for cancer immunotherapy[J]. Hum Vaccin Immunother, 2014, 10(11): 3153-3164. DOI: 10.4161/21645515.2014.980686. [20] Kim H, Kwon B, Sin JI. Combined stimulation of IL2 and 41BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Agspecific CTL responses[J]. PLoS One, 2013, 8(12): e83765. DOI: 10.1371/journal.pone.0083765. [21] Maldonado L, Teague JE, Morrow MP, et al. Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions[J]. Sci Transl Med, 2014, 6(221): 221ra13. DOI: 10.1126/scitranslmed.3007323. [22] Trimble CL, Morrow MP, Kraynyak KA, et al. Safety, efficacy, and immunogenicity of VGX3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, doubleblind, placebocontrolled phase 2b trial[J]. Lancet, 2015, 386(10008): 2078-2788. DOI: 10.1016/S01406736(15)002391. [23] Melief CJ. Treatment of established lesions caused by highrisk human papilloma virus using a synthetic vaccine[J]. J Immunother, 2012, 35(3): 215-216. DOI: 10.1097/CJI.0b013e318248f17f. [24] van Poelgeest MI, Welters MJ, van Esch EM, et al. HPV16 synthetic long peptide (HPV16SLP) vaccination therapy of patients with advanced or recurrent HPV16 induced gynecological carcinoma, a phase Ⅱ trial[J]. J Transl Med, 2013, 11: 88. DOI: 10.1186/1479-5876-11-88. [25] Hellner K, Münger K. Human papillomaviruses as therapeutic targets in human cancer[J]. J Clin Oncol, 2011, 29(13): 1785-1794. DOI: 10.1200/JCO.2010.28.2186. [26] Van Doorslaer K, Reimers LL, Studentsov YY, et al. Serological response to an HPV16 E7 based therapeutic vaccine in women with highgrade cervical dysplasia[J]. Gynecol Oncol, 2010, 116(2): 208-212. DOI: 10.1016/j.ygyno.2009.05.044. [27] Nurkkala M, Wassén L, Nordstrm I, et al. Conjugation of HPV16 E7 to cholera toxin enhances the HPVspecific Tcell recall responses to pulsed dendritic cells in vitro in women with cervical dysplasia[J]. Vaccine, 2010, 28(36): 5828-5836. DOI: 10.1016/j.vaccine.2010.06.068. [28] Wang YT, Li W, Liu Q, et al. Dendritic cells treated with HPV16mE7 in a threedimensional model promote the secretion of IL12p70 and INF-γ[J]. Exp Mol Pathol, 2011, 91(1): 325-330. DOI: 10.1016/j.yexmp.2011.03.005. [29] Hu YX, Li M, Jia XH, et al. HPV16 CTL epitope peptideactivated dendritic cell and natural killer coculture for therapy of cervical cancer in an animal model[J]. Asian Pac J Cancer Prev, 2013, 14(12): 7335-7338. [30] Liu Z, Zhou H, Wang W, et al. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PDL1 blockade elicits therapeutic antitumor immunity in mice[J]. Oncoimmunology, 2016, 5(6): e1147641. DOI: 10.1080/2162402X.2016.1147641. [31] Wu XM, Liu X, Jiao QF, et al. Cytotoxic T lymphocytes elicited by dendritic celltargeted delivery of human papillomavirus type16 E6/E7 fusion gene exert lethal effects on CaSki cells[J]. Asian Pac J Cancer Prev, 2014, 15(6): 2447-2451. [32] Ramanathan P, Ganeshrajah S, Raghanvan RK, et al. Development and clinical evaluation of dendritic cell vaccines for HPV related cervical cancer—a feasibility study[J]. Asian Pac J Cancer Prev, 2014, 15(14): 5909-5916. [33] Chen B, Liu L, Xu H, et al. Effectiveness of immune therapy combined with chemotherapy on the immune function and recurrence rate of cervical cancer[J]. Exp Ther Med, 2015, 9(3): 1063-1067. DOI: 10.3892/etm.2015.2217. |
[1] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[2] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英.免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[3] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[4] | 段传菊, 陈真云, 李晓红, 牛洪朋, 李秀敏.复发宫颈癌免疫治疗1例[J]. 国际肿瘤学杂志, 2023, 50(12): 766-768. |
[5] | 马雪艳, 鲁历历, 孙鹏飞.免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[6] | 张露, 周菊英, 马辰莺, 林州.复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. |
[7] | 史英侠, 胡莉钧, 于静萍.免疫检查点抑制剂在复发或转移性宫颈癌治疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 568-571. |
[8] | 彭琛, 谢印通, 张昕, 谢鹏.宫颈癌维持治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(7): 430-435. |
[9] | 熊婵, 阎英, 谢晓冬, 孟繁杰, 于卉影.辐射诱导的多倍体宫颈癌HeLa细胞生物学特性研究[J]. 国际肿瘤学杂志, 2022, 49(5): 263-269. |
[10] | 袁晨阳, 周菊英.宫颈癌预后因素的研究进展[J]. 国际肿瘤学杂志, 2022, 49(5): 307-313. |
[11] | 袁晨阳, 周菊英, 杜霄, 纪环, 赵天翼.宫颈癌2018与2009 FIGO分期的比较及预后因素分析[J]. 国际肿瘤学杂志, 2022, 49(3): 151-163. |
[12] | 王玥, 吴琼, 许愿, 龚唯, 徐晓婷.老年宫颈癌的筛查与治疗进展[J]. 国际肿瘤学杂志, 2022, 49(12): 754-758. |
[13] | 马秀珍, 卢艳, 赵冰冰, 邱宏聪, 徐勋, 韦敏.岗松总黄酮对宫颈癌SiHa细胞迁移、侵袭及凋亡的影响[J]. 国际肿瘤学杂志, 2021, 48(4): 206-211. |
[14] | 牛雯娟, 段文杰, 苏雅婷, 魏芳.对2018年国际妇产联盟宫颈癌新分期的思考[J]. 国际肿瘤学杂志, 2021, 48(10): 627-630. |
[15] | 于明月, 陈峥峥, 赵旭旭, 任萍萍, 张影, 葛丽, 朱美玲, 赵卫东.局部晚期宫颈癌术后辅助治疗的影响因素及其列线图风险模型的构建[J]. 国际肿瘤学杂志, 2021, 48(1): 35-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||