国际肿瘤学杂志››2020,Vol. 47››Issue (1): 51-55.doi:10.3760/cma.j.issn.1673-422X.2020.01.010
周慧萍1,2, 李宇华2, 王宇晖1, 苏义龙1, 杨营营1, 徐笑天1, 段小群1()
收稿日期:
2019-11-23修回日期:
2019-12-01出版日期:
2020-01-08发布日期:
2020-03-22通讯作者:
段小群 E-mail:duanxiaoqun66@sohu.comZhou Huiping1,2, Li Yuhua2, Wang Yuhui1, Su Yilong1, Yang Yingying1, Xu Xiaotian1, Duan Xiaoqun1()
Received:
2019-11-23Revised:
2019-12-01Online:
2020-01-08Published:
2020-03-22Contact:
Duan Xiaoqun E-mail:duanxiaoqun66@sohu.com摘要:
植物药对结肠癌具有良好的防治作用。姜黄素、多糖(苹果多糖、香菇多糖)、皂苷(重楼皂苷、人参皂苷)、白藜芦醇、槲皮素等植物药可通过不同信号通路抑制结肠癌细胞的增殖,促进细胞凋亡。此外,植物药还具有抗炎、抗氧化、抗血管生成、减轻化疗药物不良反应、逆转肿瘤细胞耐药等作用。了解植物药对结肠癌的防治作用及其可能的作用机制,能为结肠癌的临床防治提供更多的理论依据及治疗思路。
周慧萍, 李宇华, 王宇晖, 苏义龙, 杨营营, 徐笑天, 段小群. 常见植物药对结肠癌的防治作用及其作用机制[J]. 国际肿瘤学杂志, 2020, 47(1): 51-55.
Zhou Huiping, Li Yuhua, Wang Yuhui, Su Yilong, Yang Yingying, Xu Xiaotian, Duan Xiaoqun. Preventive and therapeutic effects of common plant drugs on colon cancer and its mechanism[J]. Journal of International Oncology, 2020, 47(1): 51-55.
[1] | Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492. |
[2] | Chen W, Zheng R, Baade PD , et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. DOI: 10.3322/caac.21338. |
[3] | Maresso KC, Tsai KY, Brown PH , et al. Molecular cancer prevention: current status and future directions[J]. CA Cancer J Clin, 2015,65(5):345-383. DOI: 10.3322/caac.21287. |
[4] | Kumar G, Mittal S, Sak K , et al. Molecular mechanisms underlying chemopreventive potential of curcumin: current challenges and future perspectives[J]. Life Sci, 2016,148:313-328. DOI: 10.1016/j.lfs.2016.02.022. |
[5] | 杨芳, 刘少琼, 李春花 , 等. 姜黄素下调结直肠癌细胞Notch1信号通路研究[J]. 湖南中医药大学学报, 2015, 35(4): 10-13, 50, 封3. DOI: 10.3969/j.issn.1674-070X.2015.04.003. |
[6] | Sankpal UT, Nagaraju GP, Gottipolu SR , et al. Combination of tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species[J]. Oncotarget, 2016,7(3):3186-3200. DOI: 10.18632/oncotarget.6553. |
[7] | Radhakrishnan VM, Kojs P, Young G , et al. pTyr421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1)[J]. PLoS One, 2014,9(1):e85796. DOI: 10.1371/journal.pone.0085796. |
[8] | Zhang L, Cheng X, Gao Y , et al. Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway[J]. Exp Cell Res, 2016,341(2):157-165. DOI: 10.1016/j.yexcr.2016.01.006. |
[9] | 陈贵娥, 唐源, 刘满英 , 等. 苹果多糖抑制人结肠癌细胞SW-620转移的作用及机制研究[J]. 现代肿瘤医学, 2019,27(12):2040-2044. |
[10] | 张典, 王粉侠, 弥曼 , 等. 苹果多糖预防小鼠结肠炎癌变的作用及其机制研究[J]. 中国药学杂志, 2015,50(17):1527-1531. DOI: 10.11669/cpj.2015.17.015. |
[11] | Liu Y, Zhao J, Zhao Y , et al. Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer[J]. J Cell Mol Med, 2019,23(2):750-760. DOI: 10.1111/jcmm.13897. |
[12] | Suga Y, Takehana K . Lentinan diminishes apoptotic bodies in the ileal crypts associated with S-1 administration[J]. Int Immunopharmacol, 2017,50:55-60. DOI: 10.1016/j.intimp.2017.06.012. |
[13] | Wang J, Li W, Huang X , et al. A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice[J]. Oncotarget, 2017,8(1):610-623. DOI: 10.18632/oncotarget.13481. |
[14] | Li Y, Sun Y, Fan L , et al. Paris saponin Ⅶ inhibits growth of colorectal cancer cells through Ras signaling pathway[J]. Biochem Pharmacol, 2014,88(2):150-157. DOI: 10.1016/j.bcp.2014.01.018. |
[15] | Zhou H, Sun Y, Zheng H , et al. Paris saponin Ⅶ extracted from trillium tschonoskii suppresses proliferation and induces apoptosis of human colorectal cancer cells[J]. J Ethnopharmacol, 2019,239:111903. DOI: 10.1016/j.jep.2019.111903. |
[16] | Chen M, Ye K, Zhang B , et al. Paris saponin Ⅱ inhibits colorectal carcinogenesis by regulating mitochondrial fission and NF-κB pathway[J]. Pharmacol Res, 2019,139:273-285. DOI: 10.1016/j.phrs.2018.11.029. |
[17] | 于思 . 重楼皂苷Ⅰ诱导ROS蓄积介导结肠癌细胞周期阻滞和自噬的研究[D]. 成都: 成都中医药大学, 2018. |
[18] | Han S, Jeong AJ, Yang H , et al. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells[J]. J Ethnopharmacol, 2016,194:83-90. DOI: 10.1016/j.jep.2016.08.039. |
[19] | Wang J, Chen Y, Dai C , et al. Ginsenoside Rh2 alleviates tumor-associated depression in a mouse model of colorectal carcinoma[J]. Am J Transl Res, 2016,8(5):2189-2195. |
[20] | Tang YC, Zhang Y, Zhou J , et al. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progre-ssion in vivo[J]. Int J Oncol, 2018,52(1):127-138. DOI: 10.3892/ijo.2017.4183. |
[21] | Yang X, Zou J, Cai H , et al. Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling[J]. Biomed Pharmacother, 2017, 1240-1245. DOI: 10.1016/j.biopha.2017.11.092. |
[22] | Qiu R, Qian F, Wang X , et al. Targeted delivery of 20(S)-ginse-noside Rg3-based polypeptide nanoparticles to treat colon cancer[J]. Biomed Microdevices, 2019,21(1):18. DOI: 10.1007/s10544-019-0374-0. |
[23] | Phi LTH, Wijaya YT, Sari IN , et al. The anti-metastatic effect of ginsenoside Rb2 in colorectal cancer in an EGFR/SOX2-dependent manner[J]. Cancer Med, 2018,7(11):5621-5631. DOI: 10.1002/cam4.1800. |
[24] | Chen H, Jin ZL, Xu H . MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol[J]. Asian Pac J Trop Med, 2016,9(1):49-53. DOI: 10.1016/j.apjtm.2015.12.010. |
[25] | Du Z, Zhou F, Jia Z , et al. The hedgehog/Gli-1 signaling pathways is involved in the inhibitory effect of resveratrol on human colorectal cancer HCT116 cells[J]. Iran J Basic Med Sci, 2016,19(11):1171-1176. |
[26] | Demoulin B, Hermant M, Castrogiovanni C , et al. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase Ⅱ and activates the ATM kinase to trigger p53-dependent apoptosis[J]. Toxicol In Vitro, 2015,29(5):1156-1165. DOI: 10.1016/j.tiv.2015.04.015. |
[27] | Nana AW, Wu SY, Yang YS , et al. Nano-diamino-tetrac (NDAT) enhances resveratrol-induced antiproliferation by action on the RRM2 pathway in colorectal cancers[J]. Horm Cancer, 2018,9(5):349-360. DOI: 10.1007/s12672-018-0334-9. |
[28] | Karimi Dermani F, Saidijam M, Amini R , et al. Resveratrol inhibits proliferation, invasion, and epithelial-mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells[J]. J Cell Biochem, 2017,118(6):1547-1555. DOI: 10.1002/jcb.25816. |
[29] | Darband SG, Kaviani M, Yousefi B , et al. Quercetin: a functional dietary flavonoid with potential chemo-preventive properties in colo-rectal cancer[J]. J Cell Physiol, 2018,233(9):6544-6560. DOI: 10.1002/jcp.26595. |
[30] | Roy S, Das R, Ghosh B , et al. Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer[J]. Mol Carcinog, 2018,57(6):700-721. DOI: 10.1002/mc.22792. |
[31] | Ahmed HH, Aglan HA, Zaazaa AM , et al. Quercetin confers tumoricidal activity through multipathway mechanisms in a N-methylnitrosourea rat model of colon cancer[J]. Asian Pac J Cancer Prev, 2016,17(11):4991-4998. DOI: 10.22034/APJCP.2016.17.11.4991. |
[32] | Yang Y, Wang T, Chen D , et al. Quercetin preferentially induces apoptosis in KRAS-mutant colorectal cancer cells via JNK signaling pathways[J]. Cell Biol Int, 2019,43(2):117-124. DOI: 10.1002/cbin.11055. |
[33] | Zhang Z, Li B, Xu P , et al. Integrated whole transcriptome profiling and bioinformatics analysis for revealing regulatory pathways associ-ated with quercetin-induced apoptosis in HCT-116 cells[J]. Front Pharmacol, 2019,10:798. DOI: 10.3389/fphar.2019.00798. |
[34] | Langner E, Lemieszek MK, Rzeski W . Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiprolife-rative potential in colon cancer cells in vitro[J]. J Food Biochem, 2019,43(4):e12802. DOI: 10.1111/jfbc.12802. |
[1] | 褚雪镭, 毛昀, 薛鹏, 李林潞, 陈美池, 袁淳晟, 秦晓艳, 朱世杰.化疗剂量强度对晚期结肠癌患者近期疗效的影响:基于真实世界数据研究[J]. 国际肿瘤学杂志, 2022, 49(7): 408-415. |
[2] | 王丽薇, 梁洪生, 杜松林, 陈志豪, 王晴, 高爱丽.阿维菌素类药物在抗肿瘤方面的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 353-356. |
[3] | 来比江·吾斯曼, 曹博威, 张文斌, 高华.外源性AGR2对结肠癌细胞增殖及侵袭能力的影响[J]. 国际肿瘤学杂志, 2022, 49(2): 73-78. |
[4] | 李倩倩, 朱晓娣, 赵荣兰, 彭效祥.P2X7受体在结肠癌进展中的作用[J]. 国际肿瘤学杂志, 2021, 48(4): 250-253. |
[5] | 刘瑾, 陈翔, 马群, 童东东.DNA甲基转移酶1和叉头蛋白转录因子O亚型3a在结肠癌中的表达关系研究[J]. 国际肿瘤学杂志, 2021, 48(12): 735-738. |
[6] | 刘新德, 乔雷, 黄哲, 李云泽, 冯勇.结肠癌术中使用雷替曲塞腹腔灌注化疗的近期疗效及安全性分析[J]. 国际肿瘤学杂志, 2020, 47(8): 501-504. |
[7] | 赵高传, 陈卿奇, 庞莉, 程正, 麦芳奇.miR-205及miR-221在结肠癌患者血清中的水平及其临床意义[J]. 国际肿瘤学杂志, 2019, 46(9): 526-530. |
[8] | 袁扬军, 卢大松, 邓柄取.CIAPIN1蛋白在结肠癌中的表达及其与肿瘤病理学特征的关系[J]. 国际肿瘤学杂志, 2018, 45(8): 483-486. |
[9] | 梁碧玉,何伟明,何小艺,丁元林,于海兵.糖尿病及降糖药物与胰腺癌[J]. 国际肿瘤学杂志, 2018, 45(3): 183-186. |
[10] | 邱梅清, 王涛, 佟仲生, 贾勇圣.Mfn-2基因对人乳腺癌T47D细胞光动力疗法敏感性的影响及其作用机制[J]. 国际肿瘤学杂志, 2017, 44(8): 641-646. |
[11] | 黄江, 张生军, 白利杰, 常琦.结肠癌根治术患者围手术期血清癌胚抗原水平下降与患者预后的关系[J]. 国际肿瘤学杂志, 2017, 44(8): 662-667. |
[12] | 黄虞,杜冀晖,龚慧,王秀,王磊,李一凡.miR-92a调控KLF4表达影响结肠癌细胞增殖的机制研究[J]. 国际肿瘤学杂志, 2017, 44(11): 812-818. |
[13] | 万丽娟,陈明卫.胰岛素抵抗相关因子与结肠癌干细胞的关系[J]. 国际肿瘤学杂志, 2017, 44(10): 790-793. |
[14] | 熊婷,李丽丁,严欣,谢飞燕,廖彩勤 ,陆凯强,刘晓旺,涂剑.染料木素在恶性肿瘤发生发展中的作用机制[J]. 国际肿瘤学杂志, 2016, 43(8): 609-611. |
[15] | 王艳俊,蒋永新,刘珊,王红,葛吕.青蒿素及其衍生物对肿瘤的放疗增敏作用[J]. 国际肿瘤学杂志, 2016, 43(8): 612-614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||