国际肿瘤学杂志››2023,Vol. 50››Issue (1): 37-41.doi:10.3760/cma.j.cn371439-20220930-00007
收稿日期:
2022-09-30修回日期:
2022-11-23出版日期:
2023-01-08发布日期:
2023-03-16通讯作者:
李小江 E-mail:zxqlovelxj@126.com基金资助:
Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang()
Received:
2022-09-30Revised:
2022-11-23Online:
2023-01-08Published:
2023-03-16Contact:
Li Xiaojiang E-mail:zxqlovelxj@126.comSupported by:
摘要:
MET14外显子(METex14)跳跃突变是非小细胞肺癌(NSCLC)的独立驱动基因。有3%~4%的NSCLC患者携带METex14跳跃突变,此类患者预后差,对于传统化疗、免疫治疗反应欠佳。高选择性MET抑制剂如卡马替尼、特泊替尼、赛沃替尼等在临床试验中显示出良好的有效性及安全性数据,为METex14跳跃突变患者带来新的治疗选择。
张静娴, 苏剑飞, 卫雪芹, 易丹, 李小江. MET14外显子跳跃突变非小细胞肺癌的治疗现状[J]. 国际肿瘤学杂志, 2023, 50(1): 37-41.
Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation[J]. Journal of International Oncology, 2023, 50(1): 37-41.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. doi:10.3322/caac.21660 |
[2] | Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC[J]. Nat Rev Cancer, 2017, 17(11): 637-658. DOI: 10.1038/nrc.2017.84. doi:10.1038/nrc.2017.84pmid:29068003 |
[3] | Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer[J]. Nat Med, 2021, 27(8): 1345-1356. DOI: 10.1038/s41591-021-01450-2. doi:10.1038/s41591-021-01450-2pmid:34385702 |
[4] | Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives[J]. Crit Rev Oncol Hematol, 2021, 157: 103194. DOI: 10.1016/j.critrevonc.2020.103194. doi:10.1016/j.critrevonc.2020.103194 |
[5] | Bylicki O, Paleiron N, Assié JB, et al. Targeting the MET-signaling pathway in non-small-cell lung cancer: evidence to date[J]. Onco Targets Ther, 2020, 13: 5691-5706. DOI: 10.2147/OTT.S219959. doi:10.2147/OTT.S219959 |
[6] | Guo R, Luo J, Chang J, et al. MET-dependent solid tumours—molecular diagnosis and targeted therapy[J]. Nat Rev Clin Oncol, 2020, 17(9): 569-587. DOI: 10.1038/s41571-020-0377-z. doi:10.1038/s41571-020-0377-z |
[7] | Huang C, Zou Q, Liu H, et al. Management of non-small cell lung cancer patients with MET exon 14 skipping mutations[J]. Curr Treat Options Oncol, 2020, 21(4): 33. DOI: 10.1007/s11864-020-0723-5. doi:10.1007/s11864-020-0723-5 |
[8] | Zheng Y, Fu Y, Zhong Q, et al. The treatment of advanced pulmonary sarcomatoid carcinoma[J]. Future Oncol, 2022, 18(6): 727-738. DOI: 10.2217/fon-2021-1071. doi:10.2217/fon-2021-1071 |
[9] | Cortot AB, Kherrouche Z, Descarpentries C, et al. Exon 14 deleted MET receptor as a new biomarker and target in cancers[J]. J Natl Cancer Inst, 2017, 109(5): djw262. DOI: 10.1093/jnci/djw262. doi:10.1093/jnci/djw262 |
[10] | Vuong HG, Ho ATN, Altibi AMA, et al. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer —a systematic review and meta-analysis[J]. Lung Cancer, 2018, 123: 76-82. DOI: 10.1016/j.lungcan.2018.07.006. doi:S0169-5002(18)30464-1pmid:30089599 |
[11] | Bittoni M, Yang JC, Shih JY, et al. Real-world insights into patients with advanced NSCLC and MET alterations[J]. Lung Cancer, 2021, 159: 96-106. DOI: 10.1016/j.lungcan.2021.06.015. doi:10.1016/j.lungcan.2021.06.015pmid:34320421 |
[12] | Xu Z, Li H, Dong Y, et al. Incidence and PD-L1 expression of MET 14 skipping in Chinese population: a non-selective NSCLC cohort study using RNA-based sequencing[J]. Onco Targets Ther, 2020, 13: 6245-6253. DOI: 10.2147/OTT.S241231. doi:10.2147/OTT.S241231 |
[13] | Sabari JK, Leonardi GC, Shu CA, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers[J]. Ann Oncol, 2018, 29(10): 2085-2091. DOI: 10.1093/annonc/mdy334. doi:S0923-7534(19)34207-3pmid:30165371 |
[14] | Kron A, Scheffler M, Heydt C, et al. Genetic heterogeneity of MET-aberrant NSCLC and its impact on the outcome of immunotherapy[J]. J Thorac Oncol, 2021, 16(4): 572-582. DOI: 10.1016/j.jtho.2020.11.017. doi:10.1016/j.jtho.2020.11.017pmid:33309988 |
[15] | D'Angelo A, Sobhani N, Chapman R, et al. Focus on ROS1-positive non-small cell lung cancer (NSCLC): crizotinib, resistance mechanisms and the newer generation of targeted therapies[J]. Cancers (Basel), 2020, 12(11): 3293. DOI: 10.3390/cancers12113293. doi:10.3390/cancers12113293 |
[16] | Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration[J]. Nat Med, 2020, 26(1): 47-51. DOI: 10.1038/s41591-019-0716-8. doi:10.1038/s41591-019-0716-8pmid:31932802 |
[17] | Moro-Sibilot D, Cozic N, Pérol M, et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase Ⅱ trial[J]. Ann Oncol, 2019, 30(12): 1985-1991. DOI: 10.1093/annonc/mdz407. doi:S0923-7534(20)32560-6pmid:31987302 |
[18] | Shaw AT, Bauer TM, de Marinis F, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer[J]. N Engl J Med, 2020, 383(21): 2018-2029. DOI: 10.1056/NEJMoa2027187. doi:10.1056/NEJMoa2027187 |
[19] | Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001[J]. Ann Oncol, 2019, 30(7): 1121-1126. DOI: 10.1093/annonc/mdz131. doi:S0923-7534(19)31237-2pmid:31987379 |
[20] | Reungwetwattana T, Liang Y, Zhu V, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable[J]. Lung Cancer, 2017, 103: 27-37. DOI: 10.1016/j.lungcan.2016.11.011. doi:S0169-5002(16)30527-Xpmid:28024693 |
[21] | Baltschukat S, Engstler BS, Huang A, et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation[J]. Clin Cancer Res, 2019, 25(10): 3164-3175. DOI: 10.1158/1078-0432.CCR-18-2814. doi:10.1158/1078-0432.CCR-18-2814pmid:30674502 |
[22] | Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer[J]. N Engl J Med, 2020, 383(10): 944-957. DOI: 10.1056/NEJMoa2002787. doi:10.1056/NEJMoa2002787 |
[23] | Mathieu LN, Larkins E, Akinboro O, et al. FDA approval summary: capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations[J]. Clin Cancer Res, 2022, 28(2): 249-254. DOI: 10.1158/1078-0432.CCR-21-1566. doi:10.1158/1078-0432.CCR-21-1566 |
[24] | Markham A. Tepotinib: first approval[J]. Drugs, 2020, 80(8): 829-833. DOI: 10.1007/s40265-020-01317-9. doi:10.1007/s40265-020-01317-9pmid:32361823 |
[25] | Lai GGY, Guo R, Drilon A, et al. Refining patient selection of MET-activated non-small cell lung cancer through biomarker precision[J]. Cancer Treat Rev, 2022, 110: 102444. DOI: 10.1016/j.ctrv.2022.102444. doi:10.1016/j.ctrv.2022.102444 |
[26] | Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations[J]. N Engl J Med, 2020, 383(10): 931-943. DOI: 10.1056/NEJMoa2004407. doi:10.1056/NEJMoa2004407 |
[27] | Le X, Sakai H, Felip E, et al. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from the VISION study with relevance for clinical practice[J]. Clin Cancer Res, 2022, 28(6): 1117-1126. DOI: 10.1158/1078-0432.CCR-21-2733. doi:10.1158/1078-0432.CCR-21-2733 |
[28] | Tanaka H, Taima K, Makiguchi T, et al. Activity and bioavailability of tepotinib for leptomeningeal metastasis of NSCLC with MET exon 14 skipping mutation[J]. Cancer Commun (Lond), 2021, 41(1): 83-87. DOI: 10.1002/cac2.12124. doi:10.1002/cac2.12124 |
[29] | Lu S, Fang J, Li X, et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study[J]. Lancet Respir Med, 2021, 9(10): 1154-1164. DOI: 10.1016/S2213-2600(21)00084-9. doi:10.1016/S2213-2600(21)00084-9pmid:34166627 |
[30] | Ai J, Chen Y, Peng X, et al. Preclinical evaluation of SCC244 (glumetinib), a novel, potent, and highly selective inhibitor of c-Met in MET-dependent cancer models[J]. Mol Cancer Ther, 2018, 17(4): 751-762. DOI: 10.1158/1535-7163.MCT-17-0368. doi:10.1158/1535-7163.MCT-17-0368pmid:29237805 |
[31] | ClinicalTrials. gov. A phase Ⅰb/Ⅱ, open-label, multicenter study to evaluate the efficacy and safety of glumetinib (SCC244), a selective MET inhibitor in patients with advanced non-small cell lung cancer harboring MET-alterations[EB/OL]. [2019-07-15] [2022-09-07]. https://clinicaltrials.gov/ct2/show/NCT04270591. |
[32] | Lu S, Yu Y, Zhou J, et al. Abstract CT034: phase Ⅱ study of SCC244 in NSCLC patients harboring MET exon 14 skipping (METex14) mutations (GLORY study)[J]. Cancer Res, 2022, 82(12_Supplement): CT034. DOI: 10.1158/1538-7445.AM2022-CT034. doi:10.1158/1538-7445.AM2022-CT034 |
[33] | Neijssen J, Cardoso RMF, Chevalier KM, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET[J]. J Biol Chem, 2021, 296: 100641. DOI: 10.1016/j.jbc.2021.100641. doi:10.1016/j.jbc.2021.100641 |
[34] | Vyse S, Huang PH. Amivantamab for the treatment of EGFR exon 20 insertion mutant non-small cell lung cancer[J]. Expert Rev Anticancer Ther, 2022, 22(1): 3-16. DOI: 10.1080/14737140.2022.2016397. doi:10.1080/14737140.2022.2016397 |
[35] | ClinicalTrials. gov. A phase 1, first-in-human, open-label, dose escalation study of JNJ-61186372, a human bispecific EGFR and cMet antibody, in subjects with advanced non-small cell lung cancer[EB/OL]. [2016-05-24] [2022-09-07]. https://clinicaltrials.gov/ct2/show/NCT02609776?term=NCT02609776&draw=2&rank=1. |
[36] | Amivantamab emerges positively from its "Chrysalis"[J]. Cancer Discov, 2022, 12(8): OF2. DOI: 10.1158/2159-8290.CD-NB2022-0044. doi:10.1158/2159-8290.CD-NB2022-0044 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华.炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[4] | 王昆, 周中新, 臧其威.血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[5] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[6] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[7] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏.卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. |
[8] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好.基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[9] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[10] | 李丹, 李睿尧, 李膺函, 于秀艳, 吴雪峰.血清miR-19b、miR-744-5p水平在非小细胞肺癌诊断中的临床价值[J]. 国际肿瘤学杂志, 2024, 51(2): 83-88. |
[11] | 姜溪, 武永存, 梁艳, 楚丽, 段颖欣, 王力军, 霍俊杰.派安普利单抗联合化疗对晚期非小细胞肺癌患者血管生成及循环内皮细胞的影响[J]. 国际肿瘤学杂志, 2024, 51(2): 89-94. |
[12] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[13] | 张科平, 赵永生, 杨娟, 付茂勇.绿原酸通过抑制PI3K-Akt信号通路诱导肺癌A549细胞线粒体功能障碍[J]. 国际肿瘤学杂志, 2024, 51(1): 21-28. |
[14] | 谢宇, 蒋澄, 黄明敏, 郭爱斌, 尹震宇, 林永娟.超声测量视神经鞘直径评估鞘内灌注化疗对非小细胞肺癌软脑膜转移患者颅内压的影响[J]. 国际肿瘤学杂志, 2023, 50(9): 532-539. |
[15] | 秦雪倩, 杨宏宇, 王真, 王孟超, 张欣.双特异性抗体在非小细胞肺癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 558-563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||