国际肿瘤学杂志››2018,Vol. 45››Issue (10): 635-638.doi:10.3760/cma.j.issn.1673-422X.2018.10.013
夏得淳,康晓静
收稿日期:
2018-05-24出版日期:
2018-10-08发布日期:
2018-12-21通讯作者:
康晓静 E-mail:drkangxj666@163.com基金资助:
新疆维吾尔自治区自然科学基金(2016D01C101)
Xia Dechun, Kang Xiaojing
Received:
2018-05-24Online:
2018-10-08Published:
2018-12-21Contact:
Kang Xiaojing E-mail:drkangxj666@163.comSupported by:
Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (2016D01C101)
摘要:恶性黑色素瘤是皮肤恶性肿瘤之一,具有高度侵袭性和较强的转移能力,其发病与多种信号通路的异常传导有关,但具体机制尚不完全清楚。Notch信号通路的异常激活与黑色素瘤发病关系密切,其可通过维持肿瘤细胞存活、促进肿瘤血管生成、增强肿瘤细胞的黏附力和侵袭力等方式促进黑色素瘤细胞的生长和转移。进一步了解Notch信号通路的作用机制可能为黑色素瘤的治疗提供新的靶点。
夏得淳,康晓静. Notch信号通路在黑色素瘤生长、转移中的作用及机制[J]. 国际肿瘤学杂志, 2018, 45(10): 635-638.
Xia Dechun, Kang Xiaojing. Role and mechanism of Notch signaling pathway in melanoma growth and metastasis[J]. Journal of International Oncology, 2018, 45(10): 635-638.
[1] Liu J, FukunagaKalabis M, Li L, et al. Developmental pathways activated in melanocytes and melanoma[J]. Arch Biochem Biophys, 2014, 563: 13-21. DOI: 10.1016/j.abb.2014.07.023. [2] Yuan X, Wu H, Xu H, et al. Notch signaling: an emerging therapeutic target for cancer treatment[J]. Cancer Lett, 2015, 369(1): 20-27. DOI: 10.1016/j.canlet.2015.07.048. [3] Bedogni B. Notch signaling in melanoma: interacting pathways and stromal influences that enhance Notch targeting[J]. Pigment Cell Melanoma Res, 2014, 27(2): 162-168. DOI: 10.1111/pcmr.12194. [4] Zhang JX, Han YP, Bai C, et al. Notch1/3 and p53/p21 are a potential therapeutic target for APSinduced apoptosis in nonsmall cell lung carcinoma cell lines[J]. Int J Clin Exp Med, 2015, 8(8): 12539-12547. [5] Kang S, Xie J, Miao J, et al. A knockdown of Maml1 that results in melanoma cell senescence promotes an innate and adaptive immune response[J]. Cancer Immunol Immunother, 2013, 62(1): 183-190. DOI: 10.1007/s00262-012-1318-1. [6] Asnaghi L, Lin MH, Lim KS, et al. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation[J]. PLoS One, 2014, 9(8): e105372. DOI: 10.1371/journal.pone.0105372. [7] Zheng X, Narayanan S, Zheng X, et al. A Notchindependent mechanism contributes to the induction of Hes1 gene expression in response to hypoxia in P19 cells[J]. Exp Cell Res, 2017, 358(2): 129139. DOI: 10.1016/j.yexcr.2017.06.006. [8] Ishida T, Hijioka H, Kume K, et al. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment[J]. Oncol Lett, 2013, 6(5): 1201-1206. DOI: 10.3892/ol.2013.1549 [9] Moriyama H, Moriyama M, Isshi H, et al. Role of Notch signaling in the maintenance of human mesenchymal stem cellsunder hypoxic conditions[J]. Stem Cells Dev, 2014, 23(18): 2211-2224. DOI: 10.1089/scd.2013.0642. [10] Zhang K, Wong P, Duan J, et al. An ERBB3/ERBB2 oncogenic unit plays a key role in NRG1 signaling and melanoma cell growth and survival[J]. Pigment Cell Melanoma Res, 2013, 26(3): 408-414. DOI: 10.1111/pcmr.12089. [11] Zhang K, Wong P, Salvaggio C, et al. Synchronized targeting of Notch and ERBB signaling suppresses melanoma tumor growth through inhibition of Notch1 and ERBB3[J]. J Invest Dermatol, 2016, 136(2): 464472. DOI: 10.1016/j.jid.2015.11.006. [12] Krepler C, Xiao M, Samanta M, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAFV600E melanoma[J]. Oncotarget, 2016, 7(44): 71211-71222. DOI: 10.18632/oncotarget.12078. [13] Abel EV, Basile KJ, Kugel CH 3rd, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3mediated upregulation of ERBB3[J]. J Clin Invest, 2013, 123(5): 2155-2168. DOI: 10.1172/JCI65780. [14] Skarmoutsou E, Bevelacqua V, D′Amico F, et al. FOXP3 expression is modulated by TGF β1/NOTCH1 pathway in human melanoma[J]. Int J Mol Med, 2018, 42(1): 392-404. DOI: 10.3892/ijmm.2018.3618. [15] Murtas D, Piras F, Minerba L, et al. Activated Notch1 expression is associated with angiogenesis in cutaneous melanoma[J]. Clin Exp Med, 2014, 15(3): 351-360. DOI: 10.1007/s102380140300y. [16] Liu Y, Su C, Shan Y, et al. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition nuclear factorκB signaling[J]. Am J Transl Res, 2016, 8(6): 26812692. [17] Abbas OL, Borman H, Terzi YK, et al. The Notch pathway is a critical regulator of angiogenesis in a skin model of ischemia[J]. Vasc Med, 2015, 20(3): 205-211. DOI: 10.1177/1358863X15570723. [18] Ubezio B, Blanco RA, Geudens I, et al. Synchronization of endothelial Dll4Notch dynamics switch blood vessels from branching to expansion[J]. Elife, 2016, 5: pii: e12167. DOI: 10.7554/eLife.12167. [19] Pitulescu ME, Schmidt I, Giaimo BD, et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation[J]. Nat Cell Biol, 2017, 19(8): 915-927. DOI: 10.1038/ncb3555. [20] Murata A, Hayashi S. Notchmediated cell adhesion[J]. Biology (Basel), 2016, 5(1): pii: E5. DOI: 10.3390/biology5010005. [21] Zhang JP, Li N, Bai WZ, et al. Notch ligand Deltalike 1 promotes the metastasis of melanoma by enhancing tumor adhesion[J]. Braz J Med Biol Res, 2014, 47(4): 299-306. [22] Murtas D, Maxia C, Diana A, et al. Role of epithelialmesenchymal transition involved molecules in the progression of cutaneous melanoma[J]. Histochem Cell Biol, 2017, 148(6): 639649. DOI: 10.1007/s0041801716060. [23] Singh M, Yelle N, Venugopal C, et al. EMT: mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018, 182: 8094. DOI: 10.1016/j.pharmthera.2017.08.009. [24] Breier G, Grosser M, Rezaei M. Endothelial cadherins in cancer[J]. Cell Tissue Res, 2014, 355(3): 523-527. DOI: 10.1007/s00441-014-1851-7. [25] LadeKeller J, RiberHansen R, Guldberg P, et al. E to Ncadherin switch in melanoma is associated with decreased expression of phosphatase and tensin homolog and cancer progression[J]. Br J Dermatol, 2013, 169(3): 618-628. DOI: 10.1111/bjd.12426. [26] Wieland E, RodriguezVita J, Liebler SS, et al. Endothelial Notch1 activity facilitates metastasis[J]. Cancer Cell, 2017, 31(3): 355367. DOI: 10.1016/j.ccell.2017.01.007. [27] Pearlman RL, Montes de Oca MK, Pal HC, et al. Potential therapeutic targets of epithelialmesenchymal transition in melanoma[J]. Cancer Lett, 2017, 391: 125140. DOI: 10.1016/j.canlet.2017.01.029. [28] Yuan X, Wu H, Han N, et al. Notch signaling and EMT in nonsmall cell lung cancer: biological significance and therapeutic application[J]. J Hematol Oncol, 2014, 7: 87. DOI: 10.1186/s13045-014-0087-z. [29] Lin X, Sun B, Zhu D, et al. Notch4+ cancer stemlike cells promote the metastatic and invasive ability of melanoma[J]. Cancer Sci, 2016, 107(8): 1079-1091. DOI: 10.1111/cas.12978. [30] Golan T, Messer AR, AmitaiLange A, et al. Interactions of melanoma cells with distal keratinocytes krigger metastasis via Notch signaling inhibition of MITF[J]. Mol Cell, 2015, 59(4): 664-676. DOI: 10.1016/j.molcel.2015.06.028. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王昆, 周中新, 臧其威.血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[3] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[4] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[5] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[6] | 潘书兰, 刘畅, 贺平.福瑞替尼对三阴性乳腺癌血管生成、肿瘤生长及IRE1-ASK1-JNK通路的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 457-462. |
[7] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英.免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[8] | 王军, 贾秀红.TGF-β/Smad信号通路与急性白血病[J]. 国际肿瘤学杂志, 2023, 50(8): 498-502. |
[9] | 吴旻杭, 孙文政, 于庆卓, 郭蓉, 叶辉, 杜莹, 邱晋, 安华章, 曹莉莉.RNF43通过β-catenin抑制黑色素瘤细胞PD-L1表达并促进CD8+T细胞介导的抗肿瘤免疫反应[J]. 国际肿瘤学杂志, 2023, 50(7): 407-412. |
[10] | 杨丽蓉, 王羽丰.预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[11] | 李雄安, 颜艳艳.丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[12] | 马培晗, 张灵敏, 路宁, 张明鑫.麻醉对肝细胞癌复发转移的影响[J]. 国际肿瘤学杂志, 2023, 50(2): 117-121. |
[13] | 宁婷婷, 胡钦勇, 李倩, 杨鹏程.奥希替尼与埃克替尼一线治疗EGFR阳性转移性NSCLC临床疗效观察[J]. 国际肿瘤学杂志, 2023, 50(2): 65-70. |
[14] | 张碧霞, 丁江华.EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[15] | 吕璐, 孙鹏飞, 崔腾璐.子宫内膜癌颈部淋巴结转移综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(11): 701-704. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||