国际肿瘤学杂志››2020,Vol. 47››Issue (4): 223-226.doi:10.3760/cma.j.cn371439-20191031-00006
收稿日期:
2019-10-31修回日期:
2020-01-03出版日期:
2020-04-08发布日期:
2020-05-26通讯作者:
王丽华 E-mail:drwanglh0420@163.com基金资助:
Yuan Shuang, Sun Xiao, Wang Lihua()
Received:
2019-10-31Revised:
2020-01-03Online:
2020-04-08Published:
2020-05-26Contact:
Wang Lihua E-mail:drwanglh0420@163.comSupported by:
摘要:
环状RNA是非编码RNA家族的成员,可以多种方式参与生物学功能,如细胞增殖、细胞周期、侵袭和转移等。近年来研究发现,环状RNA可以通过海绵吸附微小RNA和RNA结合蛋白参与转录后调控,从而影响肿瘤耐药过程中的DNA修复、凋亡、增殖、细胞转运,以及介导肿瘤耐药的细胞内酶,进而在肿瘤耐药中发挥重要调节作用。研究证实通过干扰环状RNA的表达,可以提高肿瘤对药物的敏感性,提示环状RNA可能为抗肿瘤药物耐药性的研究提供新的靶点。
袁霜, 孙笑, 王丽华. 环状RNA与肿瘤耐药的关系[J]. 国际肿瘤学杂志, 2020, 47(4): 223-226.
Yuan Shuang, Sun Xiao, Wang Lihua. Relationship between circular RNA and cancer drug resistance[J]. Journal of International Oncology, 2020, 47(4): 223-226.
[1] | Chen LL . The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol cell Biol, 2016,17(4):205-211. DOI: 10.1038/nrm.2015.32. doi:10.1038/nrm.2015.32 |
[2] | Liu J, Liu T, Wang X , et al. Circles reshaping the RNA world: from waste to treasure[J]. Mol Cancer, 2017,16(1):58. DOI: 10.1186/s12943-017-0630-y. doi:10.1186/s12943-017-0630-y |
[3] | Meng S, Zhou H, Feng Z , et al. CircRNA: functions and properties of a novel potential biomarker for cancer[J]. Mol Cancer, 2017,16(1):94. DOI: 10.1186/s12943-017-0663-2. doi:10.1186/s12943-017-0663-2 |
[4] | Shang Q, Yang Z, Jia R , et al. The novel roles of circRNAs in human cancer[J]. Mol Cancer, 2019,18(1):6. DOI: 10.1186/s12943-018-0934-6. doi:10.1186/s12943-018-0934-6 |
[5] | Kleaveland B, Shi CY, Stefano J , et al. A network of noncoding regulatory RNAs acts in the mammalian brain[J]. Cell, 2018, 174(2): 350-362.e17. DOI: 10.1016/j.cell.2018.05.022. doi:10.1016/j.cell.2018.05.022 |
[6] | Yu CY, Kuo HC . The emerging roles and functions of circular RNAs and their generation[J]. J Biomed Sci, 2019,26(1):29. DOI: 10.1186/s12929-019-0523-z. doi:10.1186/s12929-019-0523-z |
[7] | Du WW, Yang W, Chen Y , et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2016,38(18):1402-1412. DOI: 10.1093/eurheartj/ehw001. |
[8] | Yang Y, Gao X, Zhang M , et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018,110(3). DOI: 10.1093/jnci/djx166. |
[9] | Wang D, Yang S, Wang H , et al. The progress of circular RNAs in various tumors[J]. Am J Transl Res, 2018,10(6):1571-1582. |
[10] | Wei Y, Chen X, Liang C , et al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma[J]. Hepatology, 2020,71(1):130-147. DOI: 10.1002/hep.30795. doi:10.1002/hep.v71.1 |
[11] | Gavande NS, Vandervere-Carozza PS, Hinshaw HD , et al. DNA repair targeted therapy: the past or future of cancer treatment?[J]. Pharmacol Ther, 2016,160:65-83. DOI: 10.1016/j.pharmthera.2016.02.003. doi:10.1016/j.pharmthera.2016.02.003 |
[12] | Yin JY, Zhang JT, Zhang W , et al. eIF3a: a new anticancer drug target in the eIF family[J]. Cancer Lett, 2018,412:81-87. DOI: 10.1016/j.canlet.2017.09.055. doi:10.1016/j.canlet.2017.09.055 |
[13] | Fang C, Chen YX, Wu NY , et al. MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway[J]. Sci Rep, 2017,7:40384. DOI: 10.1038/srep40384. doi:10.1038/srep40384 |
[14] | Huang MS, Yuan FQ, Gao Y , et al. Circular RNA screening from EIF3a in lung cancer[J]. Cancer Med, 2019,8(9):4159-4168. DOI: 10.1002/cam4.2338. |
[15] | Su Y, Yang W, Jiang N , et al. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance[J]. Int J Biol Sci, 2019,15(2):441-452. DOI: 10.7150/ijbs.26826. doi:10.7150/ijbs.26826 |
[16] | Manic G, Sistigu A, Corradi F , et al. Replication stress response in cancer stem cells as a target for chemotherapy[J]. Semin Cancer Biol, 2018,53:31-41. DOI: 10.1016/j.semcancer.2018.08.003. doi:10.1016/j.semcancer.2018.08.003 |
[17] | Sang Y, Chen B, Song X , et al. CircRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer[J]. Mol Ther, 2019,27(9):1638-1652. DOI: 10.1016/j.ymthe.2019.05.011. doi:10.1016/j.ymthe.2019.05.011 |
[18] | Liu Y, Ao X, Ding W , et al. Critical role of FOXO3a in carcinogenesis[J]. Mol Cancer, 2018,17(1):104. DOI: 10.1186/s12943-018-0856-3. doi:10.1186/s12943-018-0856-3 |
[19] | Rathore R, McCallum JE, Varghese E, et al. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs)[J]. Apoptosis, 2017,22(7):898-919. DOI: 10.1007/s10495-017-1375-1. doi:10.1007/s10495-017-1375-1 |
[20] | Shang J, Chen WM, Wang ZH , et al. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis[J]. Exp Hematol, 2019,70:42-54, e3. DOI: 10.1016/j.exphem.2018.10.011. doi:10.1016/j.exphem.2018.10.011 |
[21] | Abu N, Hon KW, Jeyaraman S , et al. Identification of differentially expressed circular RNAs in chemoresistant colorectal cancer[J]. Epigenomics, 2019,11(8):875-884. DOI: 10.2217/epi-2019-0042. doi:10.2217/epi-2019-0042 |
[22] | Zhou Y, Zheng X, Xu B , et al. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway[J]. Biochem Biophys Res Commun, 2019,508(2):527-535. DOI: 10.1016/j.bbrc.2018.11.157. doi:10.1016/j.bbrc.2018.11.157 |
[23] | Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E , et al. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer[J]. Front Oncol, 2019,9:1008. DOI: 10.3389/fonc.2019.01008. doi:10.3389/fonc.2019.01008 |
[24] | Miao Y, Zheng W, Li N , et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway[J]. Sci Rep, 2017,7:41942. DOI: 10.1038/srep41942. doi:10.1038/srep41942 |
[25] | Li D, Mullinax JE, Aiken T , et al. Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells[J]. BMC Cancer, 2018,18(1):772. DOI: 10.1186/s12885-018-4690-1. doi:10.1186/s12885-018-4690-1 |
[26] | Zhu KP, Ma XL, Zhang CL . Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1[J]. Int J Biol Sci, 2018,14(3):321-330. DOI: 10.7150/ijbs.24360. doi:10.7150/ijbs.24360 |
[27] | Yu W, Peng W, Sha H , et al. Hsa_circ_0003998 promotes chemoresistance via modulation of miR-326 in lung adenocarcinoma cells[J]. Oncol Res, 2019,27(5):623-628. DOI: 10.3727/096504018X15420734828058. doi:10.3727/096504018X15420734828058 |
[28] | Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: multifaceted players with incipient potentialities in cancer[J]. Semin Cancer Biol, 2019, Inpress. DOI: 10.1016/j.semcancer.2019.10.004. |
[29] | Du Y, Shen L, Zhang W , et al. Functional analyses of microRNA-326 in breast cancer development[J]. Biosci Rep, 2019, 39(7). pii: BSR20190787. DOI: 10.1042/BSR20190787. |
[30] | Allocati N, Masulli M, Di Ilio C , et al. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases[J]. Oncogenesis, 2018,7(1):8. DOI: 10.1038/s41389-017-0025-3. doi:10.1038/s41389-017-0025-3 |
[31] | Zhu KP, Zhang CL, Ma XL , et al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance[J]. Mol Ther, 2019,27(3):518-530. DOI: 10.1016/j.ymthe.2019.01.001. doi:10.1016/j.ymthe.2019.01.001 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||