国际肿瘤学杂志››2020,Vol. 47››Issue (4): 236-239.doi:10.3760/cma.j.cn371439-20190923-00009
收稿日期:
2019-09-23修回日期:
2019-10-27出版日期:
2020-04-08发布日期:
2020-05-26通讯作者:
阎英 E-mail:yanyingdoctor@sina.com基金资助:
Received:
2019-09-23Revised:
2019-10-27Online:
2020-04-08Published:
2020-05-26Contact:
Yan Ying E-mail:yanyingdoctor@sina.comSupported by:
摘要:
对于非小细胞肺癌患者的治疗而言,放疗是重要的局部治疗方法之一。但治疗过程中出现的放疗抵抗往往是影响疗效的最大障碍,也是治疗失败的主要原因。寻找放射敏感性标志物,对于发现其具体抵抗机制,改善疗效及预后有重大的意义,并可为非小细胞肺癌的放射增敏治疗提供思路及依据。
李光烈, 阎英. 非小细胞肺癌放射敏感性标志物[J]. 国际肿瘤学杂志, 2020, 47(4): 236-239.
Li Guanglie, Yan Ying. Radiosensitivity markers of non-small cell lung cancer[J]. Journal of International Oncology, 2020, 47(4): 236-239.
[1] | Chen W, Zheng R, Baade PD , et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. DOI: 10.3322/caac.21338. doi:10.3322/caac.21338 |
[2] | Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015[J]. CA Cancer J Clin, 2015,65(1):5-29. DOI: 10.3322/caac.21254. doi:10.3322/caac.21254 |
[3] | Murugan AK. mTOR: Role in cancer, metastasis and drug resistance[J]. Semin Cancer Biol, 2019, pii: S1044-579X(18) 30135-4. DOI: 10.1016/j.semcancer.2019.07.003. |
[4] | Chen Y, Li W, Peng P , et al. mTORC1 inhibitor RAD001 (everolimus) enhances non-small cell lung cancer cell radiosensitivity in vitro via suppressing epithelial-mesenchymal transition[J]. Acta Pharmacol Sin, 2019,40(8):1085-1094. DOI: 10.1038/s41401-019-0215-y. doi:10.1038/s41401-019-0215-y |
[5] | Zhao L, Wang DL, Liu Y , et al. Histone acetyltransferase hMOF promotes S phase entry and tumorigenesis in lung cancer[J]. Cell Signal, 2013,25(8):1689-1698. DOI: 10.1016/j.cellsig.2013.04.006. doi:10.1016/j.cellsig.2013.04.006 |
[6] | Li N, Tian GW, Tang LR , et al. hMOF reduction enhances radiosensitivity through the homologous recombination pathway in non-small-cell lung cancer[J]. Onco Targets Ther, 2019,12:3065-3075. DOI: 10.2147/OTT.S192568. doi:10.2147/OTT |
[7] | Torok JA, Oh P, Castle KD , et al. Deletion of Atm in tumor but not endothelial cells improves radiation response in a primary mouse model of lung adenocarcinoma[J]. Cancer Res, 2019,79(4):773-782. DOI: 10.1158/0008-5472.CAN-17-3103. doi:10.1158/0008-5472.CAN-17-3103 |
[8] | Zhong X, Luo G, Zhou X , et al. Rad51 in regulating the radiosensitivity of non-small cell lung cancer with different epidermal growth factor receptor mutation status[J]. Thoracic Cancer, 2016,7(1):50-60. DOI: 10.1111/1759-7714.12274. doi:10.1111/1759-7714.12274 |
[9] | Yin ZJ, Jin FG, Liu TG , et al. Overexpression of STAT3 potentiates growth, survival, and radioresistance of non-small-cell lung cancer (NSCLC) cells[J]. J Surg Res, 2011,171(2):675-683. DOI: 10.1016/j.jss.2010.03.053. doi:10.1016/j.jss.2010.03.053 |
[10] | Wang M, Meng B, Liu Y , et al. MiR-124 inhibits growth and enhances radiation-induced apoptosis in non-small cell lung cancer by inhibiting STAT3[J]. Cell Physiol Biochem, 2017,44(5):2017-2028. DOI: 10.1159/000485907. doi:10.1159/000485907 |
[11] | Hu C, Zhuang W, Qiao Y , et al. Effects of combined inhibition of STAT3 and VEGFR2 pathways on the radiosensitivity of non-small-cell lung cancer cells[J]. Onco Targets Ther, 2019,12:933-944. DOI: 10.2147/OTT.S186559. doi:10.2147/OTT |
[12] | Klein C, Dokic I, Mairani A , et al. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation[J]. Radiat Oncol, 2017,12(1):208. DOI: 10.1186/s13014-017-0939-0. doi:10.1186/s13014-017-0939-0 |
[13] | Wang G, Xiao L, Wang F , et al. Hypoxia inducible factor-1α/B-cell lymphoma 2 signaling impacts radiosensitivity of H1299 non-small cell lung cancer cells in a normoxic environment[J]. Radiat Environ Biophys, 2019,58(3):439-448. DOI: 10.1007/s00411-019-00802-4. doi:10.1007/s00411-019-00802-4 |
[14] | Ikezawa Y, Sakakibara-Konishi J, Mizugaki H , et al. Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer[J]. Int J Clin Oncol, 2017,22(1):59-69. DOI: 10.1007/s10147-016-1031-8. doi:10.1007/s10147-016-1031-8 |
[15] | Xu J, Patel NH, Saleh T , et al. Differential radiation sensitivity in p53 wild-type and p53-deficient tumor cells associated with senescence but not apoptosis or (nonprotective) autophagy[J]. Radiat Res, 2018,190(5):538-557. DOI: 10.1667/RR15099.1. doi:10.1667/RR15099.1 |
[16] | Jung IL, Kang HJ, Kim KC , et al. PTEN/pAkt/p53 signaling pathway correlates with the radioresponse of non-small cell lung cancer[J]. Int J Mol Med, 2010,25(4):517-523. DOI: 10.3892/ijmm_00000372. |
[17] | Chen QN, Wei CC, Wang ZX , et al. Long non-coding RNAs in anti-cancer drug resistance[J]. Oncotarget, 2017,8(1):1925-1936. DOI: 10.18632/oncotarget.12461. doi:10.18632/oncotarget.v8i1 |
[18] | Yang YR, Zang SZ, Zhong CL , et al. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung cancer[J]. Int J Clin Exp Pathol, 2014,7(10):6929-6935. |
[19] | Liu AM, Zhu Y, Huang ZW , et al. Long noncoding RNA FAM201A involves in radioresistance of non-small-cell lung cancer by enhancing EGFR expression via miR-370[J]. Eur Rev Med Pharmacol Sci, 2019,23(13):5802-5814. DOI: 10.26355/eurrev_201907_18319. |
[20] | Yang X, Zhang W, Cheng SQ , et al. High expression of lncRNA GACAT3 inhibits invasion and metastasis of non-small cell lung cancer to enhance the effect of radiotherapy[J]. Eur Rev Med Pharmacol Sci, 2018,22(5):1315-1322. DOI: 10.26355/eurrev_201803_14473. |
[21] | Xue Y, Ni T, Jiang Y , et al. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer[J]. Oncol Res, 2017,25(8):1305-1316. DOI: 10.3727/096504017-X14850182723737. doi:10.3727/096504017X14850182723737 |
[22] | Jiang LP, He CY, Zhu ZT . Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene[J]. Oncotarget, 2017,8(14):23675-23689. DOI: 10.18632/oncotarget.15644. doi:10.18632/oncotarget.v8i14 |
[23] | Chen X, Xu Y, Liao X , et al. Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer[J]. Tumour Biol, 2016,37(9):11927-11936. DOI: 10.1007/s13277-016-5052-8. doi:10.1007/s13277-016-5052-8 |
[24] | Guo Y, Sun W, Gong T , et al. miR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM[J]. Oncol Rep, 2017,37(4):1980-1988. DOI: 10.3892/or.2017.5448. doi:10.3892/or.2017.5448 |
[25] | Shen Z, Wu X, Wang Z , et al. Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer[J]. Int J Clin Exp Pathol, 2015,8(1):643-648. |
[26] | Liu G, Li YI, Gao X . Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis[J]. Oncol Lett, 2016,11(4):2903-2908. DOI: 10.3892/ol.2016.4316. doi:10.3892/ol.2016.4316 |
[27] | Provencio M, Sánchez A, Garrido P , et al. New molecular targeted therapies integrated with radiation therapy in lung cancer[J]. Clin Lung Cancer, 2010,11(2):91-97. DOI: 10.3816/CLC.2010.n.012. doi:10.3816/CLC.2010.n.012 |
[28] | Chinnaiyan P, Huang S, Vallabhaneni G , et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva)[J]. Cancer Res, 2005,65(8):3328-3335. DOI: 10.1158/0008-5472.CAN-04-3547. doi:10.1158/0008-5472.CAN-04-3547 |
[29] | Ma H, Bi J, Liu T , et al. Icotinib hydrochloride enhances the effect of radiotherapy by affecting DNA repair in colorectal cancer cells[J]. Oncol Rep, 2015,33(3):1161-1170. DOI: 10.3892/or.2014.3699. doi:10.3892/or.2014.3699 |
[30] | Xie B, Sun L, Cheng Y , et al. Epidermal growth factor receptor gene mutations in non-small-cell lung cancer cells are associated with increased radiosensitivity in vitro[J]. Cancer Manag Res, 2018,10:3551-3560. DOI: 10.2147/CMAR.S165831. doi:10.2147/CMAR |
[1] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[2] | 朱思雨, 王学红, 李文茜, 刘曙.胃癌患者血清FABP1水平及其与幽门螺杆菌感染的关系[J]. 国际肿瘤学杂志, 2023, 50(6): 336-341. |
[3] | 刘博翰, 黄俊星.溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[4] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳.沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. |
[5] | 肖楠, 孙鹏飞.氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[6] | 周仁邦, 张仲传, 许志远, 朱勋兵.miR-219a-5p通过负调控HMGA2抑制骨肉瘤U2OS细胞增殖、侵袭和迁移[J]. 国际肿瘤学杂志, 2022, 49(4): 193-198. |
[7] | 徐露, 龙金华, 金风, 吴伟莉.肿瘤免疫原性细胞死亡相关分子表达的临床意义[J]. 国际肿瘤学杂志, 2022, 49(2): 106-110. |
[8] | 金嘉会, 陈存海, 马学真.放射相关miRNA在乳腺癌放疗中的作用[J]. 国际肿瘤学杂志, 2022, 49(12): 735-738. |
[9] | 井文君, 赵文文, 冯青青, 赵文飞, 赵丽丽, 张雪, 魏红梅.miR-34家族用于胃癌治疗的分子基础及临床前景[J]. 国际肿瘤学杂志, 2022, 49(11): 681-686. |
[10] | 罗丽云, 赖灿辉, 梁仁佩, 杨爱武, 林志敏.晚期胃癌中miR-524-5p与SOX9表达的相关性及其对化疗疗效和预后的影响[J]. 国际肿瘤学杂志, 2022, 49(1): 45-50. |
[11] | 刘佩, 蒲嘉泽, 黄雯, 汪斐.吉非替尼敏感与耐药NSCLC患者miR-200c、miR-19a、miR-155表达差异及其对患者预后的影响[J]. 国际肿瘤学杂志, 2021, 48(7): 409-414. |
[12] | 王阳, 刘芊, 龙辉, 吴清明.结直肠癌标志物粪便检测的研究现状[J]. 国际肿瘤学杂志, 2021, 48(7): 441-444. |
[13] | 程一鸣, 李刚, 王振明, 吕倩文, 李世荣.血清miR-196a-5p、miR-105-5p在良恶性肺结节鉴别诊断中的价值[J]. 国际肿瘤学杂志, 2021, 48(5): 282-286. |
[14] | 侯江厚, 姚颖杰, 詹晓燕, 杨奕梅.Hsp90与SIRT1相互作用对肺癌细胞发生EMT的调控作用[J]. 国际肿瘤学杂志, 2021, 48(4): 200-205. |
[15] | 邓波儿, 孔为民.子宫内膜癌的表观遗传学研究进展[J]. 国际肿瘤学杂志, 2021, 48(3): 184-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||