国际肿瘤学杂志››2022,Vol. 49››Issue (11): 681-686.doi:10.3760/cma.j.cn371439-20220927-00134
井文君1, 赵文文2, 冯青青2, 赵文飞2, 赵丽丽3, 张雪2, 魏红梅2()
收稿日期:
2022-09-27修回日期:
2022-10-17出版日期:
2022-11-08发布日期:
2022-12-06通讯作者:
魏红梅 E-mail:13001776675@163.com基金资助:
Jing Wenjun1, Zhao Wenwen2, Feng Qingqing2, Zhao Wenfei2, Zhao Lili3, Zhang Xue2, Wei Hongmei2()
Received:
2022-09-27Revised:
2022-10-17Online:
2022-11-08Published:
2022-12-06Contact:
Wei Hongmei E-mail:13001776675@163.comSupported by:
摘要:
miR-34家族在胃癌中起着重要作用,与正常胃黏膜组织相比,在胃癌细胞株和胃癌组织中检测到miR-34家族的失活或表达减低,表明其与胃癌的发生发展有关。研究表明miR-34通过调节IGF2BP3、生存素、Bcl-2以及上皮-间质转化相关通路,在抑制胃癌进展中发挥关键作用,可见miR-34是胃癌治疗的重要靶点。临床治疗方面,miR-34不仅被证实具有放化疗增敏性,并且在肿瘤临床试验中取得了不错的疗效。随着靶向胃癌的miR-34载体出现,使其用于胃癌治疗成为可能。深入了解miR-34用于胃癌治疗的分子基础及临床疗效,有助于评估miR-34家族作为胃癌治疗新靶点的潜力。
井文君, 赵文文, 冯青青, 赵文飞, 赵丽丽, 张雪, 魏红梅. miR-34家族用于胃癌治疗的分子基础及临床前景[J]. 国际肿瘤学杂志, 2022, 49(11): 681-686.
Jing Wenjun, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhao Lili, Zhang Xue, Wei Hongmei. Molecular basis and clinical prospect of the miR-34 family for the treatment of gastric cancer[J]. Journal of International Oncology, 2022, 49(11): 681-686.
[1] | Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474. doi:10.1097/CM9.0000000000001474 |
[2] | Chung HC, Bang YJ, S Fuchs C, et al. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811[J]. Future Oncol, 2021, 17(5): 491-501. DOI: 10.2217/fon-2020-0737. doi:10.2217/fon-2020-0737pmid:33167735 |
[3] | Janjigian YY, Shitara K, Moehler M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial[J]. Lancet, 2021, 398(10294): 27-40. DOI: 10.1016/S0140-6736(21)00797-2. doi:10.1016/S0140-6736(21)00797-2pmid:34102137 |
[4] | 徐惠绵, 潘四维. 胃癌诊治研究进展2021年度盘点[J]. 肿瘤学杂志, 2022, 28(2): 81-85. DOI: 10.11735/j.issn.1671-170X.2022.02.B001. doi:10.11735/j.issn.1671-170X.2022.02.B001 |
[5] | Liu G, Jiang C, Li D, et al. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer[J]. Tumour Biol, 2014, 35(10): 9801-9806. DOI: 10.1007/s13277-014-2273-6. doi:10.1007/s13277-014-2273-6 |
[6] | Mirzajani E, Vahidi S, Norollahi SE, et al. Novel biomarkers of microRNAs in gastric cancer: an overview from diagnosis to treatment[J]. Microrna, 2022, 11(1): 12-24. DOI: 10.2174/2211536611666220322160242. doi:10.2174/2211536611666220322160242 |
[7] | Xiong S, Hu M, Li C, et al. Role of miR‑34 in gastric cancer: from bench to bedside (review)[J]. Oncol Rep, 2019, 42(5): 1635-1646. DOI: 10.3892/or.2019.7280. doi:10.3892/or.2019.7280pmid:31432176 |
[8] | Bonetti P, Climent M, Panebianco F, et al. Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer[J]. Oncogene, 2019, 38(3): 360-374. DOI: 10.1038/s41388-018-0445-3. doi:10.1038/s41388-018-0445-3pmid:30093634 |
[9] | Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool?[J]. Crit Rev Oncol Hematol, 2018(132): 1-8. DOI: 10.1016/j.critrevonc.2018.09.006. doi:10.1016/j.critrevonc.2018.09.006 |
[10] | Shi L, Wang Z, Geng X, et al. Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancer cells in vitro and in vivo[J]. Aging (Albany NY), 2020, 12(9): 8549-8564. DOI: 10.18632/aging.103157. doi:10.18632/aging.103157 |
[11] | Wang H, Wang F, Wang X, et al. Friend or foe: a cancer suppressor microRNA-34 potentially plays an adverse role in vascular diseases by regulating cell apoptosis and extracellular matrix degradation[J]. Med Sci Monit, 2019, 25: 1952-1959. DOI: 10.12659/MSM.915270. doi:10.12659/MSM.915270 |
[12] | Wang B, Li D, Kovalchuk I, et al. miR-34a directly targets tRNAiMetprecursors and affects cellular proliferation, cell cycle, and apoptosis[J]. Proc Natl Acad Sci U S A, 2018, 115(28): 7392-7397. DOI: 10.1073/pnas.1703029115. doi:10.1073/pnas.1703029115pmid:29941603 |
[13] | Zhang L, Wang L, Dong D, et al. MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis[J]. Cell Prolif, 2019, 52(1): e12527. DOI: 10.1111/cpr.12527. doi:10.1111/cpr.12527 |
[14] | Xi L, Zhang Y, Kong S, et al. miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression[J]. Biosci Rep, 2018, 38(3): BSR20180078. DOI: 10.1042/BSR20180078. doi:10.1042/BSR20180078 |
[15] | Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 53. DOI: 10.1186/s13046-019-1059-5. doi:10.1186/s13046-019-1059-5 |
[16] | Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell[J]. Tumour Biol, 2017, 39(5): 1010428317701652. DOI: 10.1177/1010428317701652. doi:10.1177/1010428317701652 |
[17] | Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: from research to therapeutic potential[J]. J Cancer, 2018, 9(20): 3765-3775. DOI: 10.7150/jca.25576. doi:10.7150/jca.25576pmid:30405848 |
[18] | 李可心. IGF2BP3在食管鳞癌和结直肠癌中的作用及机制研究[D]. 北京: 北京协和医学院, 2020. DOI: 10.27648/d.cnki.gzxhu.2020.000169. doi:10.27648/d.cnki.gzxhu.2020.000169 |
[19] | Zhou Y, Huang T, Siu HL, et al. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinoge-nesis[J]. Mol Cancer, 2017, 16(1): 77. DOI: 10.1186/s12943-017-0647-2. doi:10.1186/s12943-017-0647-2 |
[20] | 李可心, 黄常志. IGF2BP3在肿瘤中作用的研究进展[C]// 中国生物化学与分子生物学会2019年全国学术会议暨学会成立四十周年论文集, 太原: 中国生物化学与分子生物学会, 2019: 91. |
[21] | 符白玉, 林怡, 徐琪, 等. 胃癌患者血清p53、PDCD-5、survivin表达水平及其联合应用的价值[J]. 分子诊断与治疗杂志, 2021, 13(4): 615-618, 622. DOI: 10.3969/j.issn.1674-6929.2021.04.027. doi:10.3969/j.issn.1674-6929.2021.04.027 |
[22] | Kim WJ, Kim W, Bae JM, et al. Dehydroabietic acid is a novel survivin inhibitor for gastric cancer[J]. Plants (Basel), 2021, 10(6): 1047. DOI: 10.3390/plants10061047. doi:10.3390/plants10061047 |
[23] | Wheatley SP, Altieri DC. Survivin at a glance[J]. J Cell Sci, 2019, 132(7): jcs223826. DOI: 10.1242/jcs.223826. doi:10.1242/jcs.223826 |
[24] | 姚学权, 刘福坤, 祁晓萍, 等. 胃腺癌组织survivin基因的表达与细胞增殖及凋亡的相关性研究[J]. 中华外科杂志, 2004, 42(3): 145-148. DOI: 10.3760/j:issn:0529-5815.2004.03.005. doi:10.3760/j:issn:0529-5815.2004.03.005 |
[25] | Sun XP, Dong X, Lin L, et al. Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer[J]. FEBS J, 2014, 281(1): 115-128. DOI: 10.1111/febs.12577. doi:10.1111/febs.12577 |
[26] | Ji Q, Hao X, Meng Y, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres[J]. BMC Cancer, 2008, 8: 266. DOI: 10.1186/1471-2407-8-266. doi:10.1186/1471-2407-8-266pmid:18803879 |
[27] | Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122(11): 1630-1637. DOI: 10.1038/s41416-020-0802-1. doi:10.1038/s41416-020-0802-1 |
[28] | Shen Z, Zhan G, Ye D, et al. MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin[J]. Med Oncol, 2012, 29(4): 2473-2480. DOI: 10.1007/s12032-011-0156-x. doi:10.1007/s12032-011-0156-xpmid:22246523 |
[29] | Than VT, Tran HTT, Ly DV, et al. Bioinformatic identification and expression analysis of the chicken B cell lymphoma (BCL) gene[J]. Genes Genomics, 2019, 41(10): 1195-1206. DOI: 10.1007/s13258-019-00849-z. doi:10.1007/s13258-019-00849-z |
[30] | 方宇, 王琳玲, 王海娟, 等. Survivin、 Bcl-2在胃癌组织中的表达及临床意义[J]. 肿瘤药学, 2021, 11(4): 474-479. DOI: 10.3969/j.issn.2095-1264.2021.04.14. doi:10.3969/j.issn.2095-1264.2021.04.14 |
[31] | 杨百仞. miR-34a/miR-335对survivin的表达调控及在胃癌中的生物功能学研究[D]. 广州: 南方医科大学, 2016: 1-103. DOI: 10.7666/d.Y3117024. doi:10.7666/d.Y3117024 |
[32] | 赵丽丽, 赵文文, 冯青青, 等. 沉默PD-L1表达对胃癌细胞生物学行为的影响[J]. 国际肿瘤学杂志, 2021, 48(12): 705-710. DOI: 10.3760/cma.j.cn371439-20210813-00140. doi:10.3760/cma.j.cn371439-20210813-00140 |
[33] | Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition[J]. Arch Biochem Biophys, 2021, 710: 108984. DOI: 10.1016/j.abb.2021.108984. doi:10.1016/j.abb.2021.108984 |
[34] | Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. DOI: 10.1007/s11684-018-0656-6. doi:10.1007/s11684-018-0656-6 |
[35] | Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. DOI: 10.1038/s41580-018-0080-4. doi:10.1038/s41580-018-0080-4 |
[36] | Yang Y, Li X, Du J, et al. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori[J]. Exp Cell Res, 2018, 367(2): 196-204. DOI: 10.1016/j.yexcr.2018.03.036. doi:S0014-4827(18)30196-4pmid:29604247 |
[37] | Dilek FH, Topak N, Aktepe F, et al. E-cadherin, beta-catenin adhesion complex and relation to matrilysin expression in pT3 rectosigmoid cancers[J]. Pathol Res Pract, 2008, 204(11): 809-815. DOI: 10.1016/j.prp.2008.05.010. doi:10.1016/j.prp.2008.05.010pmid:18674869 |
[38] | Dobriţoiu M, Stepan AE, Mărgăritescu C, et al. Immunoexpression of E-cadherin, P-cadherin and fibronectin in gastric carcinomas[J]. Rom J Morphol Embryol, 2019, 60(2): 573-579. |
[39] | Cha YH, Kim NH, Park C, et al. MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling[J]. Cell Cycle, 2012, 11(7): 1273-1281. DOI: 10.4161/cc.19618. doi:10.4161/cc.19618pmid:22421157 |
[40] | Wieczorek-Szukala K, Lewinski A. The role of snail-1 in thyroid cancer—what we know so far[J]. J Clin Med, 2021, 10(11): 2324. DOI: 10.3390/jcm10112324. doi:10.3390/jcm10112324 |
[41] | Baulida J, Díaz VM, Herreros AG. Snail1: a transcriptional factor controlled at multiple levels[J]. J Clin Med, 2019, 8(6): 757. DOI: 10.3390/jcm8060757. doi:10.3390/jcm8060757 |
[42] | 金丽, 耿敬姝. Snail蛋白表达与胃癌浸润转移的相关性研究[J]. 肿瘤预防与治疗, 2008, 21(1): 22-24. DOI: 10.3969/j.issn.1674-0904.2008.01.006. doi:10.3969/j.issn.1674-0904.2008.01.006 |
[43] | Siemens H, Jackstadt R, Hünten S, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions[J]. Cell Cycle, 2011, 10(24): 4256-4271. DOI: 10.4161/cc.10.24.18552. doi:10.4161/cc.10.24.18552pmid:22134354 |
[44] | Zhang Y, Yuan Y, Zhang Y, et al. SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer[J]. Cell Cycle, 2020, 19(1): 142-152. DOI: 10.1080/15384101.2019.1699753. doi:10.1080/15384101.2019.1699753pmid:31814518 |
[45] | 曹利勉. c-Myc通过长非编码RNA LAST调控细胞周期的机制研究[D]. 合肥: 中国科学技术大学, 2019. |
[46] | 刘德仁, 丁闯, 侍孝红, 等. c-Myc在人胃癌组织中的表达及其对胃癌细胞增殖、迁移和侵袭的影响[J]. 现代肿瘤医学, 2021, 29(20): 3526-3531. DOI: 10.3969/j.issn.1672-4992.2021.20.004. doi:10.3969/j.issn.1672-4992.2021.20.004 |
[47] | Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors[J]. Cancer Treat Rev, 2018, 62: 50-60. DOI: 10.1016/j.ctrv.2017.11.002. doi:S0305-7372(17)30187-1pmid:29169144 |
[48] | Jiang W, Wang D, Alraies A, et al. Wnt-GSK3 β/β-catenin regulates the differentiation of dental pulp stem cells into bladder smooth muscle cells[J]. Stem Cells Int, 2019, 2019: 8907570. DOI: 10.1155/2019/8907570. doi:10.1155/2019/8907570 |
[49] | Wei B, Cao J, Tian JH, et al. Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3β/β-catenin signa-ling pathway[J]. Am J Cancer Res, 2021, 11(6): 2696-2716. pmid:34249423 |
[50] | Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer[J]. Nat Rev Cancer, 2021, 21(1): 5-21. DOI: 10.1038/s41568-020-00307-z. doi:10.1038/s41568-020-00307-zpmid:33097916 |
[51] | 李硕果, 孔国强, 高社干. GSK3β在贲门腺癌中的表达及临床意义[J]. 重庆医学, 2020, 49(17): 2882-2884, 2888. DOI: 10.3969/j.issn.1671-8348.2020.17.023. doi:10.3969/j.issn.1671-8348.2020.17.023 |
[52] | Pan J, Fan Z, Wang Z, et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 52. DOI: 10.1186/s13046-019-1049-7. doi:10.1186/s13046-019-1049-7 |
[53] | Li X, Chen W, Yang C, et al. IGHG1 upregulation promoted gastric cancer malignancy via AKT/GSK-3β/β-catenin pathway[J]. Cancer Cell Int, 2021, 21(1): 397. DOI: 10.1186/s12935-021-02098-1. doi:10.1186/s12935-021-02098-1pmid:34315496 |
[54] | Wang G, Liu G, Ye Y, et al. Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SGC-7901 cells through inhibition of the PI3K/Akt signaling pathway[J]. Oncol Lett, 2016, 11(4): 2661-2667. DOI: 10.3892/ol.2016.4266. doi:10.3892/ol.2016.4266pmid:27073535 |
[55] | Zhang Q, Wang J, Li N, et al. miR-34a increases the sensitivity of colorectal cancer cells to 5-fluorouracil in vitro and in vivo[J]. Am J Cancer Res, 2018, 8(2): 280-290. |
[56] | Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy[J]. Crit Rev Oncol Hematol, 2017, 109: 69-78. DOI: 10.1016/j.critrevonc.2016.11.017. doi:S1040-8428(16)30351-1pmid:28010900 |
[57] | Beg MS, Brenner AJ, Sachdev J, et al. Phase Ⅰ study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017, 35(2): 180-188. DOI: 10.1007/s10637-016-0407-y. doi:10.1007/s10637-016-0407-y |
[58] | Zhang Z, Kong Y, Yang W, et al. Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting Met[J]. Oncol Rep, 2016, 36(4): 2391-2397. DOI: 10.3892/or.2016.5016. doi:10.3892/or.2016.5016pmid:27513895 |
[59] | Song Z, Liang X, Wang Y, et al. Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer[J]. Biomater Sci, 2019, 7(4): 1632-1642. DOI: 10.1039/c8bm01385c. doi:10.1039/c8bm01385c |
[1] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[2] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[3] | 解淑萍, 孙亚红, 汪超.早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[4] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹.胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[5] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[6] | 邵慧芳, 王学红, 芦永福.CST1在胃癌进展中的作用机制及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 489-492. |
[7] | 朱思雨, 王学红, 李文茜, 刘曙.胃癌患者血清FABP1水平及其与幽门螺杆菌感染的关系[J]. 国际肿瘤学杂志, 2023, 50(6): 336-341. |
[8] | 杨娅, 王慧礼, 刘艳, 郭金凤, 王春霞, 吕敏, 山长平.GCSH基因在胃癌SNU-1细胞增殖和凋亡中的作用研究[J]. 国际肿瘤学杂志, 2023, 50(5): 257-262. |
[9] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳.沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. |
[10] | 姬薇, 关泉林, 陈雅蕊, 焦福智, 罗倩文.血脂水平与胃癌的相关性[J]. 国际肿瘤学杂志, 2023, 50(3): 183-185. |
[11] | 范珊琳, 汪品秀, 孔飞, 周玉洁, 袁文臻.胃癌新辅助化疗后肿瘤退缩分级预测因素的研究进展[J]. 国际肿瘤学杂志, 2023, 50(2): 112-116. |
[12] | 杨俊, 李荣, 曾建昌.复方苦参注射液联合SOX方案治疗老年晚期胃癌的临床疗效[J]. 国际肿瘤学杂志, 2023, 50(2): 82-86. |
[13] | 邓莉莉, 段星宇, 李保中.HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[14] | 李佳宜, 王跃, 尚兰兰, 徐兴, 赵岩.人工智能技术在胃癌诊断与治疗中的实践与展望[J]. 国际肿瘤学杂志, 2023, 50(11): 677-682. |
[15] | 于晓鹏, 冯青青, 赵文飞, 赵文文, 魏红梅.靶向治疗联合免疫检查点抑制剂在HER2阳性进展期胃癌中的应用[J]. 国际肿瘤学杂志, 2023, 50(10): 631-635. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||