国际肿瘤学杂志››2020,Vol. 47››Issue (2): 107-111.doi:10.3760/cma.j.issn.1673-422X.2020.02.009
收稿日期:
2019-06-27修回日期:
2019-08-10出版日期:
2020-02-08发布日期:
2020-05-27通讯作者:
付振明 E-mail:davidfuzming@whu.edu.cn基金资助:
Fu Lingli, Li Ping, Zhang Rui, Han Jianglong, Fu Zhenming()
Received:
2019-06-27Revised:
2019-08-10Online:
2020-02-08Published:
2020-05-27Contact:
Fu Zhenming E-mail:davidfuzming@whu.edu.cnSupported by:
摘要:
辐射性肺炎是胸部肿瘤放疗过程中的常见并发症,由此造成的呼吸衰竭是最严重的不良反应。辐射性肺炎的发生及其严重程度取决于多种因素,包括患者年龄、体力状况评分、吸烟状况、肺部基础情况、肿瘤大小、肿瘤位置、放化疗相关因素、炎症指标、单核苷酸多态性等。还有研究者将单光子发射计算机断层成像术、PET-CT等影像学检查应用于辐射性肺炎的预测,而其实用性仍有待加强。目前仍需进一步研究,找出预测辐射性肺炎发生的金标准。
符伶俐, 李萍, 张芮, 韩江龙, 付振明. 胸部肿瘤患者辐射性肺炎的发生和预测因素[J]. 国际肿瘤学杂志, 2020, 47(2): 107-111.
Fu Lingli, Li Ping, Zhang Rui, Han Jianglong, Fu Zhenming. Occurrence and perdictive factors of radiation pneumonitis in patients with thoracic tumor[J]. Journal of International Oncology, 2020, 47(2): 107-111.
[1] | 郑荣寿, 孙可欣, 张思维 , 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019,41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.005. |
[2] | Palma DA, Senan S, Tsujino K , et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis[J]. Int J Radiat Oncol Biol Phys, 2013,85(2):444-450. DOI: 10.1016/j.ijrobp.2012.04.043. doi:10.1016/j.ijrobp.2012.04.043 |
[3] | Ding NH, Li JJ, Sun LQ . Molecular mechanisms and treatment of radiation-induced lung fibrosis[J]. Curr Drug Targets, 2013,14(11):1347-1356. DOI: 10.2174/13894501113149990198. |
[4] | 郑啓盛, 刘培勋 . 放射性肺纤维化的分子机制及其防治药物综述[J]. 辐射研究与辐射工艺学报, 2016,34(1):3-12. DOI: 10.11889/j.1000-3436.2016.rrj.34.010101. |
[5] | Choi SH, Hong ZY, Nam JK , et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis[J]. Clin Cancer Res, 2015,21(16):3716-3726. DOI: 10.1158/1078-0432.Ccr-14-3193. |
[6] | Richeldi L, Collard HR, Jones MG . Idiopathic pulmonary fibrosis[J]. Lancet, 2017,389(10082):1941-1952. DOI: 10.1016/s0140-6736(17)30866-8. |
[7] | Giridhar P, Mallick S, Rath GK , et al. Radiation induced lung injury: prediction, assessment and management[J]. Asian Pac J Cancer Prev, 2015,16(7):2613-2617. DOI: 10.7314/apjcp.2015.16.7.2613. |
[8] | Ozawa Y, Abe T, Omae M , et al. Impact of preexisting interstitial lung disease on acute, extensive radiation pneumonitis: retrospective analysis of patients with lung cancer[J]. PLoS One, 2015,10(10):e0140437. DOI: 10.1371/journal.pone.0140437. |
[9] | Briere TM, Krafft S, Liao Z , et al. Lung size and the risk of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2016,94(2):377-384. DOI: 10.1016/j.ijrobp.2015.10.002. |
[10] | Torre-Bouscoulet L, Muñoz-Montaño WR, Martínez-Briseño D , et al. Abnormal pulmonary function tests predict the development of radiation-induced pneumonitis in advanced non-small cell lung cancer[J]. Respir Res, 2018,19(1):72. DOI: 10.1186/s12931-018-0775-2. |
[11] | Zhao J, Yorke ED, Li L , et al. Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies[J]. Int J Radiat Oncol Biol Phys, 2016,95(5):1357-1366. DOI: 10.1016/j.ijrobp.2016.03.024. |
[12] | Liang J, Bi N, Wu S , et al. Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage Ⅲ non-small cell lung cancer: a multicenter randomized phase Ⅲ trial[J]. Ann Oncol, 2017,28(4):777-783. DOI: 10.1093/annonc/mdx009. |
[13] | Pan WY, Bian C, Zou GL , et al. Combing NLR, V20and mean lung dose to predict radiation induced lung injury in patients with lung cancer treated with intensity modulated radiation therapy and chemotherapy[J]. Oncotarget, 2017,8(46):81387-81393. DOI: 10.18632/oncotarget.19032. |
[14] | Giuliani ME, Lindsay PE, Kwan JY , et al. Correlation of dosimetric and clinical factors with the development of esophagitis and radiation pneumonitis in patients with limited-stage small-cell lung carcinoma[J]. Clin Lung Cancer, 2015,16(3):216-220. DOI: 10.1016/j.cllc.2014.11.008. |
[15] | Hoover DA, Reid RH, Wong E , et al. SPECT-based functional lung imaging for the prediction of radiation pneumonitis: a clinical and dosimetric correlation[J]. J Med Imaging Radiat Oncol, 2014,58(2):214-222. DOI: 10.1111/1754-9485.12145. |
[16] | Kim TH, Cho KH, Pyo HR , et al. Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer[J]. Radiology, 2005,235(1):208-215. DOI: 10.1148/radiol.2351040248. |
[17] | Kong FM, Hayman JA, Griffith KA , et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis[J]. Int J Radiat Oncol Biol Phys, 2006,65(4):1075-1086. DOI: 10.1016/j.ijrobp.2006.01.051. |
[18] | Kharofa J, Cohen EP, Tomic R , et al. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2012,84(1):238-243. DOI: 10.1016/j.ijrobp.2011.11.013. |
[19] | Zhao Y, Chen L, Zhang S , et al. Predictive factors for acute radiation pneumonitis in postoperative intensity modulated radiation therapy and volumetric modulated arc therapy of esophageal cancer[J]. Thorac Cancer, 2015,6(1):49-57. DOI: 10.1111/1759-7714.12142. |
[20] | Alharbi M, Janssen S, Golpon H , et al. Temporal and spatial dose distribution of radiation pneumonitis after concurrent radiochemotherapy in stage Ⅲ non-small cell cancer patients[J]. Radiat Oncol, 2017,12(1):165. DOI: 10.1186/s13014-017-0898-5. |
[21] | Meng Y, Yang H, Wang W , et al. Excluding PTV from lung volume may better predict radiation pneumonitis for intensity modulated radiation therapy in lung cancer patients[J]. Radiat Oncol, 2019,14(1):7. DOI: 10.1186/s13014-018-1204-x. |
[22] | Zhuang H, Yuan Z, Chang JY , et al. Radiation pneumonitis in patients with non-small-cell lung cancer treated with erlotinib concurrent with thoracic radiotherapy[J]. J Thorac Oncol, 2014,9(6):882-885. DOI: 10.1097/jto.0000000000000126. |
[23] | Chiang CL, Chen YW, Wu MH , et al. Radiation recall pneumonitis induced by epidermal growth factor receptor-tyrosine kinase inhibitor in patients with advanced nonsmall-cell lung cancer[J]. J Chin Med Assoc, 2016,79(5):248-255. DOI: 10.1016/j.jcma.2016.01.008. |
[24] | Shaverdian N, Lisberg AE, Bornazyan K , et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial[J]. Lancet Oncol, 2017,18(7):895-903. DOI: 10.1016/s1470-2045(17)30380-7. |
[25] | Antonia SJ, Villegas A, Daniel D , et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer[J]. N Engl J Med, 2017,377(20):1919-1929. DOI: 10.1056/NEJMoa1709937. |
[26] | Wang S, Campbell J, Stenmark MH , et al. Plasma levels of IL-8 and TGF-beta1 predict radiation-induced lung toxicity in non-small cell lung cancer: a validation study[J]. Int J Radiat Oncol Biol Phys, 2017,98(3):615-621. DOI: 10.1016/j.ijrobp.2017.03.011. |
[27] | Andreassen CN, Schack LM, Laursen LV , et al. Radiogenomics-current status, challenges and future directions[J]. Cancer Lett, 2016,382(1):127-136. DOI: 10.1016/j.canlet.2016.01.035. |
[28] | Tucker SL, Li M, Xu T , et al. Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2013,85(1):251-257. DOI: 10.1016/j.ijrobp.2012.02.021. |
[29] | Saito T, Nakayama H, Yamada T , et al. Is severe emphysema, as defined by quantitative CT measurement, a negative risk factor of radiation fibrosis?[J]. Br J Radiol, 2018,91(1087):20170921. DOI: 10.1259/bjr.20170921. |
[30] | Abdulla S, Salavati A, Saboury B , et al. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study[J]. Eur J Nucl Med Mol Imaging, 2014,41(2):350-356. DOI: 10.1007/s00259-013-2579-4. doi:10.1007/s00259-013-2579-4 |
[31] | Anthony GJ, Cunliffe A, Castillo R , et al. Incorporation of pre-therapy18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis [J]. Med Phys, 2017,44(7):3686-3694. DOI: 10.1002/mp.12282. |
[32] | Farr KP, Kramer S, Khalil AA , et al. Role of perfusion SPECT in prediction and measurement of pulmonary complications after radiotherapy for lung cancer[J]. Eur J Nucl Med Mol Imaging, 2015,42(8):1315-1324. DOI: 10.1007/s00259-015-3052-3. |
[33] | Eslick EM, Stevens MJ, Bailey DL . SPECT V/Q in lung cancer radiotherapy planning[J]. Semin Nucl Med, 2019,49(1):31-36. DOI: 10.1053/j.semnuclmed.2018.10.009. |
[34] | Vinogradskiy Y, Schubert L, Diot Q , et al. Regional lung function profiles of stage Ⅰ and Ⅲ lung cancer patients: an evaluation for functional avoidance radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2016,95(4):1273-1280. DOI: 10.1016/j.ijrobp.2016.02.058. |
[35] | Faught AM, Miyasaka Y, Kadoya N , et al. Evaluating the toxicity reduction with computed tomographic ventilation functional avoidance radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2017,99(2):325-333. DOI: 10.1016/j.ijrobp.2017.04.024. |
[36] | Krafft SP, Rao A, Stingo F , et al. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis[J]. Med Phys, 2018,45(11):5317-5324. DOI: 10.1002/mp.13150. |
[1] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[3] | 李济时, 陆钊群, 刘俊茹, 吕建勋, 陈霜, 沈琳, 徐志渊, 吴平安.新辅助放疗联合部分喉切除术治疗喉滑膜肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(2): 123-125. |
[4] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会.中国食管癌放射治疗指南(2023年版)[J]. 国际肿瘤学杂志, 2024, 51(1): 1-20. |
[5] | 高新雨, 李振江, 孙洪福, 韩丹, 赵倩, 刘成新, 黄伟.基于MR加速器的MR引导放疗在食管癌患者中的临床应用[J]. 国际肿瘤学杂志, 2024, 51(1): 37-42. |
[6] | 崔腾璐, 吕璐, 孙鹏飞.放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[7] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[8] | 许萌, 姜伟, 朱海涛, 曹雄锋.癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[9] | 石小琪, 汪红艳.肠道菌群与放射性肠炎的相互作用及研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 244-247. |
[10] | 李进芝, 赵彪, 文晓博, 张明, 袁美芳, 孙梦真, 蒲琴, 杨毅.Monaco系统计算网格尺寸对T4期鼻咽癌的剂量学影响[J]. 国际肿瘤学杂志, 2023, 50(11): 641-649. |
[11] | 耿睿, 马俊强, 郭强, 牛钊峰.老年乳腺癌患者的综合治疗方式选择倾向及其影响因素[J]. 国际肿瘤学杂志, 2023, 50(11): 650-654. |
[12] | 王冰, 王爱馥, 刘雯舒, 范娇娇, 田伟成, 王玮莉, 刘博宇.重组人血小板生成素治疗肿瘤放疗所致血小板减少症的疗效及安全性[J]. 国际肿瘤学杂志, 2023, 50(11): 661-667. |
[13] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会.新型冠状病毒感染疫情背景下肿瘤患者放射治疗管理相关问题中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(10): 577-584. |
[14] | 王瑾, 李若阳, 赵雪巍, 李辉, 周志国, 赵静霞.盐酸美金刚治疗放射性认知功能障碍及其与维生素联合应用的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 622-626. |
[15] | 许婷婷, 胡超苏, 李宝生.抗EGFR单抗治疗局部晚期头颈部鳞状细胞癌临床共识(2023年版)[J]. 国际肿瘤学杂志, 2023, 50(1): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||