国际肿瘤学杂志››2020,Vol. 47››Issue (5): 308-311.doi:10.3760/cma.j.cn371439-20200208-00025
苏昊1, 刘文杰2(), 包满都拉1, 罗寿1, 王雪玮1, 赵传多1, 刘骞1, 王锡山1, 周志祥1, 周海涛1(
)
收稿日期:
2020-02-08修回日期:
2020-03-01出版日期:
2020-05-08发布日期:
2020-07-02通讯作者:
刘文杰 E-mail:wenjie6363@163.com;zhouhaitao01745@163.com基金资助:
Su Hao1, Liu Wenjie2(), Bao Mandula1, Luo Shou1, Wang Xuewei1, Zhao Chuanduo1, Liu Qian1, Wang Xishan1, Zhou Zhixiang1, Zhou Haitao1(
)
Received:
2020-02-08Revised:
2020-03-01Online:
2020-05-08Published:
2020-07-02Contact:
Liu Wenjie E-mail:wenjie6363@163.com;zhouhaitao01745@163.comSupported by:
摘要:
西妥昔单抗是治疗转移性结直肠癌(mCRC)重要的分子靶向药物,可增加化疗疗效并延长患者生存期,但是部分患者对该类药物存在不敏感或耐药现象,其分子机制尚未完全揭示。随着表皮生长因子受体(EGFR)信号通路研究的深入,KRAS、BRAF、PTEN、PIK3CA等基因的改变以及微小RNA(miRNA)的多态性逐渐被证实与西妥昔单抗耐药相关,最新的研究亦表明Wnt信号通路及其负性调控因子RNF43可能与西妥昔单抗耐药相关。总结mCRC西妥昔单抗耐药分子机制的研究进展,可为后续寻找治疗药物奠定理论基础。
苏昊, 刘文杰, 包满都拉, 罗寿, 王雪玮, 赵传多, 刘骞, 王锡山, 周志祥, 周海涛. 转移性结直肠癌西妥昔单抗耐药的分子机制[J]. 国际肿瘤学杂志, 2020, 47(5): 308-311.
Su Hao, Liu Wenjie, Bao Mandula, Luo Shou, Wang Xuewei, Zhao Chuanduo, Liu Qian, Wang Xishan, Zhou Zhixiang, Zhou Haitao. Molecular mechanisms of cetuximab resistance in metastatic colorectal cancer[J]. Journal of International Oncology, 2020, 47(5): 308-311.
[1] | Kirstein MM, Lange A, Prenzler A, et al. Targeted therapies in metastatic colorectal cancer: a systematic review and assessment of currently available data[J]. Oncologist, 2014,19(11):1156-1168. DOI: 10.1634/theoncologist.2014-0032. doi:10.1634/theoncologist.2014-0032 |
[2] | 李敏敏, 毕祥, 王哲海. 转移性结直肠癌抗EGFR单抗获得性耐药的研究进展[J]. 国际肿瘤学杂志, 2014,41(5):357-360. DOI: 10.3760/cma.j.issn.1673-422X.2014.05.012. doi:10.3760/cma.j.issn.1673-422X.2014.05.012 |
[3] | Sotelo MJ, García-Paredes B, Aguado C, et al. Role of cetuximab in first-line treatment of metastatic colorectal cancer[J]. World J Gastroenterol, 2014,20(15):4208-4219. DOI: 10.3748/wjg.v20.i15.4208. doi:10.3748/wjg.v20.i15.4208pmid:24764659 |
[4] | 刘晓娜, 田庄, 魏晓飞, 等. 联合检测结直肠癌患者血浆及组织中KRAS、NRAS、BRAF及PIK3CA基因突变情况[J]. 中华病理学杂志, 2019,48(5):373-377. DOI: 10.3760/cma.j.issn.0529-5807.2019.05.008. |
[5] | Limbach C, Laue MM, Wang X, et al. Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site[J]. Proc Natl Acad Sci U S A, 2011,108(31):E392-E401. DOI: 10.1073/pnas.1101707108. doi:10.1073/pnas.1101707108pmid:21712437 |
[6] | Douillard JY, Siena S, Cassidy J, et al. Randomized, phase Ⅲ trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study[J]. J Clin Oncol, 2010,28(31):4697-4705. DOI: 10.1200/JCO.2009.27.4860. doi:10.1200/JCO.2009.27.4860pmid:20921465 |
[7] | Dienstmann R, De Dosso S, Felip E, et al. Drug development to overcome resistance to EGFR inhibitors in lung and colorectal cancer[J]. Mol Oncol, 2012,6(1):15-26. DOI: 10.1016/j.molonc.2011.11.009. doi:10.1016/j.molonc.2011.11.009 |
[8] | Clark JI, Singh J, Ernstoff MS, et al. A multi-center phase Ⅱ study of high dose interleukin-2 sequenced with vemurafenib in patients with BRAF-V600 mutation positive metastatic melanoma[J]. J Immuno-ther Cancer, 2018,6(1):76. DOI: 10.1186/s40425-018-0387-x. |
[9] | Van Cutsem E, Kohne CH, Láng I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colo-rectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status[J]. J Clin Oncol, 2011,29(15):2011-2019. DOI: 10.1200/JCO.2010.33.5091. doi:10.1200/JCO.2010.33.5091 |
[10] | Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer[J]. J Clin Oncol, 2011,29(10):1261-1270. DOI: 10.1200/JCO.2010.30.1366. doi:10.1200/JCO.2010.30.1366 |
[11] | Yuan ZX, Wang XY, Qin QY, et al. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti-EGFR monoclonal antibodies: a meta-analysis[J]. PLoS One, 2013,8(6):e65995. DOI: 10.1371/journal.pone.0065995. doi:10.1371/journal.pone.0065995pmid:23776587 |
[12] | Haddadi N, Lin Y, Travis G, et al. PTEN/PTENP1: 'regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy[J]. Mol Cancer, 2018,17(1):37. DOI: 10.1186/s12943-018-0803-3. doi:10.1186/s12943-018-0803-3pmid:29455665 |
[13] | Frattini M, Saletti P, Romagnani E, et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients[J]. Br J Cancer, 2007,97(8):1139-1145. DOI: 10.1038/sj.bjc.6604009. doi:10.1038/sj.bjc.6604009pmid:17940504 |
[14] | Razis E, Pentheroudakis G, Rigakos G, et al. EGFR gene gain and PTEN protein expression are favorable prognostic factors in patients with KRAS wild-type metastatic colorectal cancer treated with cetu-ximab[J]. J Cancer Res Clin Oncol, 2014,140(5):737-748. DOI: 10.1007/s00432-014-1626-2. doi:10.1007/s00432-014-1626-2pmid:24595598 |
[15] | De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis[J]. Lancet Oncol, 2010,11(8):753-762. DOI: 10.1016/S1470-2045(10)70130-3. doi:10.1016/S1470-2045(10)70147-9pmid:20619739 |
[16] | Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a micro-RNA expression analysis[J]. Lancet Oncol, 2010,11(2):136-146. DOI: 10.1016/S1470-2045(09)70343-2. doi:10.1016/S1470-2045(09)70386-9pmid:20022810 |
[17] | Ruzzo A, Graziano F, Vincenzi B, et al. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease[J]. Oncologist, 2012,17(6):823-829. DOI: 10.1634/theoncologist.2012-0081. doi:10.1634/theoncologist.2012-0081 |
[18] | Mosakhani N, Lahti L, Borze I, et al. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF[J]. Cancer Genet, 2012,205(11):545-551. DOI: 10.1016/j.cancergen.2012.08.003. doi:10.1016/j.cancergen.2012.08.003pmid:23098991 |
[19] | Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017,36(11):1461-1473. DOI: 10.1038/onc.2016.304. doi:10.1038/onc.2016.304pmid:27617575 |
[20] | Ma Y, Yang Y, Wang F, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α[J]. Gut, 2016,65(9):1494-1504. DOI: 10.1136/gutjnl-2014-308392. doi:10.1136/gutjnl-2014-308392pmid:25994219 |
[21] | Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer[J]. Mol Cancer, 2010,9(1):236. DOI: 10.1186/1476-4598-9-236. doi:10.1186/1476-4598-9-236 |
[22] | Therkildsen C, Bergmann TK, Henrichsen-Schnack T, et al. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis[J]. Acta Oncol, 2014,53(7):852-864. DOI: 10.3109/0284186X. doi:10.3109/0284186X.2014.895036 |
[23] | Koo BK, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors[J]. Nature, 2012,488(7413):665-669. DOI: 10.1038/nature11308. doi:10.1038/nature11308 |
[24] | 徐星宇, 来茂德. 环指蛋白43的结构、功能及其在肿瘤中的作用[J]. 临床与实验病理学杂志, 2016,32(6):673-677. DOI: 10.13315/j.cnki.cjcep.2016.06.017. |
[25] | Serra S, Chetty R. Rnf43[J]. J Clin Pathol, 2018,71(1):1-6. DOI: 10.1136/jclinpath-2017-204763. doi:10.1136/jclinpath-2017-204763pmid:29018044 |
[26] | Lebensohn AM, Rohatgi R. R-spondins can potentiate WNT signaling without LGRs[J]. Elife, 2018,7:e33126. DOI: 10.7554/eLife.33126. doi:10.7554/eLife.33126pmid:29405118 |
[27] | Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer[J]. Cancer Cell, 2018,33(1): 125-136.e3. DOI: 10.1016/j.ccell.2017.12.004. doi:10.1016/j.ccell.2017.12.004pmid:29316426 |
[28] | Steinhart Z, Pavlovic Z, Chandrashekhar M, et al. Corrigendum: Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors[J]. Nat Med, 2017,23(11):1384. DOI: 10.1038/nm1117-1384d. doi:10.1038/nm1117-1384dpmid:29117169 |
[29] | Coffey RJ, Hawkey CJ, Damstrup L, et al. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells[J]. Proc Natl Acad Sci U S A, 1997,94(2):657-662. DOI: 10.1073/pnas.94.2.657. doi:10.1073/pnas.94.2.657pmid:9012840 |
[30] | Lu Y, Zhao X, Liu Q, et al. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling[J]. Nat Med, 2017,23(11):1331. DOI: 10.1038/nm.4424. doi:10.1038/nm.4424pmid:29035371 |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[3] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[4] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[5] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[6] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[7] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[8] | 龚艳, 陈洪雷.微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[9] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[10] | 马正红, 姜超.非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[11] | 黄辉, 丁江华.靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[12] | 刘德宝, 孙子雯, 鲁守堂, 徐海东.ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[13] | 安荣, 刘美华, 王佩晨, 王晓慧.Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. |
[14] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[15] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||