国际肿瘤学杂志››2020,Vol. 47››Issue (7): 419-422.doi:10.3760/cma.j.cn371439-20200224-00048
收稿日期:
2020-02-24修回日期:
2020-03-06出版日期:
2020-07-08发布日期:
2020-08-18通讯作者:
马飞 E-mail:drmafei@126.comReceived:
2020-02-24Revised:
2020-03-06Online:
2020-07-08Published:
2020-08-18Contact:
Ma Fei E-mail:drmafei@126.com摘要:
在肿瘤的发生发展中,经典Wnt/β-catenin信号通路发挥着重要作用,是抗肿瘤治疗的潜在靶点,然而该通路也参与调节正常组织的再生,因此通路靶向抑制剂的专一性受到影响。β-catenin的共激活因子B细胞淋巴瘤因子9(BCL9)仅在肿瘤细胞中高表达,因此靶向β-catenin与BCL9相互作用的抑制剂可能有更好的特异性和安全性。BCL9通过诱导肿瘤细胞上皮间质转化、上调血管内皮生长因子和CD44的基因表达、调节肿瘤干细胞特性来促进肿瘤的生长、浸润和转移,有望成为抗肿瘤治疗的新靶点。
翟婧彤, 马飞. 恶性肿瘤中BCL9的功能及其靶向治疗研究[J]. 国际肿瘤学杂志, 2020, 47(7): 419-422.
Zhai Jingtong, Ma Fei. Research on the function and targeted therapy of BCL9 in malignant tumors[J]. Journal of International Oncology, 2020, 47(7): 419-422.
[1] | Schaefer KN, Peifer M. Wnt/beta-catenin signaling regulation and a role for biomolecular condensates[J]. Dev Cell, 2019,48(4):429-444. DOI: 10.1016/j.devcel.2019.01.025. doi:10.1016/j.devcel.2019.01.025pmid:30782412 |
[2] | Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors[J]. Cancer Treat Rev, 2018,62:50-60. DOI: 10.1016/j.ctrv.2017.11.002. pmid:29169144 |
[3] | Feng M, Jin JQ, Xia L, et al. Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating Tregcells[J]. Sci Adv, 2019, 5(5): eaau5240. DOI: 10.1126/sciadv.aau5240. doi:10.1126/sciadv.aau5240pmid:31086813 |
[4] | Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks[J]. J Clin Med, 2016,5(4):41. DOI: 10.3390/jcm5040041. |
[5] | Moor AE, Anderle P, Cantù C, et al. BCL9/9L-β-catenin signaling is associated with poor outcome in colorectal cancer[J]. EBioMedicine, 2015,2(12):1932-1943. DOI: 10.1016/j.ebiom.2015.10.030. doi:10.1016/j.ebiom.2015.10.030pmid:26844272 |
[6] | Luo M, Hou L, Li J, et al. VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-κB and β-catenin[J]. Cancer Lett, 2016,373(1):1-11. DOI: 10.1016/j.canlet.2016.01.010. doi:10.1016/j.canlet.2016.01.010pmid:26805761 |
[7] | Linke F, Harenberg M, Nietert MM, et al. Microenvironmental interactions between endothelial and lymphoma cells: a role for the cano-nical WNT pathway in Hodgkin lymphoma[J]. Leukemia, 2017,31(2):361-372. DOI: 10.1038/leu.2016.232. doi:10.1038/leu.2016.232pmid:27535218 |
[8] | Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 2017,541(7635):41-45. DOI: 10.1038/nature20791. pmid:27974793 |
[9] | Schmitt M, Metzger M, Gradl D, et al. CD44 functions in Wnt signaling by regulating LRP6 localization and activation[J]. Cell Death Differ, 2015,22(4):677-689. DOI: 10.1038/cdd.2014.156. doi:10.1038/cdd.2014.156pmid:25301071 |
[10] | Zhan T, Ambrosi G, Wandmacher AM, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer[J]. Nat Commun, 2019,10(1):2197. DOI: 10.1038/s41467-019-09898-0. doi:10.1038/s41467-019-09898-0pmid:31097693 |
[11] | Gay DM, Ridgway RA, Müller M, et al. Loss of BCL9/9l sup-presses Wnt driven tumourigenesis in models that recapitulate human cancer[J]. Nat Commun, 2019,10(1):723. DOI: 10.1038/s41467-019-08586-3. doi:10.1038/s41467-019-08586-3pmid:30760720 |
[12] | Elsarraj HS, Hong Y, Valdez KE, et al. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion[J]. Breast Cancer Res, 2015,17:128. DOI: 10.1186/s13058-015-0630-z. doi:10.1186/s13058-015-0630-zpmid:26384318 |
[13] | Madani SH, Payandeh M, Sadeghi M, et al. The correlation between Ki-67 with other prognostic factors in breast cancer: a study in Iranian patients[J]. Indian J Med Paediatr Oncol, 2016,37(2):95-99. DOI: 10.4103/0971-5851.180136. doi:10.4103/0971-5851.180136pmid:27168707 |
[14] | Jiang M, Kang Y, Sewastianik T, et al. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins[J]. Nat Commun, 2020,11(1):19. DOI: 10.1038/s41467-019-13842-7. doi:10.1038/s41467-019-13842-7pmid:31911584 |
[15] | Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma[J]. Cell, 2017, 169(7): 1327-1341. e1323. DOI: 10.1016/j.cell.2017.05.046. |
[16] | Huge N, Sandbothe M, Schröder AK, et al. Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma[J]. Hepatol Int, 2020,14(3):373-384. DOI: 10.1007/s12072-019-09977-w. doi:10.1007/s12072-019-09977-wpmid:31440992 |
[17] | Xu W, Zhou W, Cheng M, et al. Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocel-lular carcinoma[J]. Sci Rep, 2017,7:40446. DOI: 10.1038/srep40446. doi:10.1038/srep40446pmid:28074862 |
[18] | Cai J, Fang L, Huang Y, et al. Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC[J]. Nat Commun, 2017,8:15870. DOI: 10.1038/ncomms15870. doi:10.1038/ncomms15870pmid:28627514 |
[19] | Zhang Y, Zhang Q, Chen H, et al. BCL9 promotes epithelial mesenchymal transition and invasion in cisplatin resistant NSCLC cells via β-catenin pathway[J]. Life Sci, 2018,208:284-294. DOI: 10.1016/j.lfs.2018.07.023. doi:10.1016/j.lfs.2018.07.023pmid:30009824 |
[20] | Mita MM, Becerra C, Richards DA, et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with paclitaxel (P) in patients (pts) with 1st- to 3rd-line metastatic HER2-negative breast cancer (BC) [J]. J Clin Oncol, 2016,34(15_suppl):2516. DOI: 10.1200/JCO.2016.34.15_suppl.2516. doi:10.1200/JCO.2015.66.0787 |
[21] | Le PN, McDermott JD, Jimeno A. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28[J]. Pharmacol Ther, 2015,146:1-11. DOI: 10.1016/j.pharmthera.2014.08.005. doi:10.1016/j.pharmthera.2014.08.005pmid:25172549 |
[22] | Moore KN, Gunderson CC, Sabbatini P, et al. A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer[J]. Gynecol Oncol, 2019,154(2):294-301. DOI: 10.1016/j.ygyno.2019.04.001. doi:10.1016/j.ygyno.2019.04.001pmid:31174889 |
[23] | Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding[J]. Br J Pharmacol, 2017,174(24):4611-4636. DOI: 10.1111/bph.14038. doi:10.1111/bph.14038pmid:28910490 |
[24] | Arqués O, Chicote I, Puig I, et al. Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer[J]. Clin Cancer Res, 2016,22(3):644-656. DOI: 10.1158/1078-0432.CCR-14-3081. doi:10.1158/1078-0432.CCR-14-3081pmid:26224873 |
[25] | Fang L, Zhu Q, Neuenschwander M, et al. A small-molecule ant-agonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis[J]. Cancer Res, 2016,76(4):891-901. DOI: 10.1158/0008-5472.CAN-15-1519. doi:10.1158/0008-5472.CAN-15-1519pmid:26645562 |
[26] | Hwang SY, Deng X, Byun S, et al. Direct targeting of β-catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling[J]. Cell Rep, 2016,16(1):28-36. DOI: 10.1016/j.celrep.2016.05.071. doi:10.1016/j.celrep.2016.05.071pmid:27320923 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||