国际肿瘤学杂志››2020,Vol. 47››Issue (8): 487-491.doi:10.3760/cma.j.cn371439-20191105-00062
收稿日期:
2019-11-05修回日期:
2020-03-11出版日期:
2020-08-08发布日期:
2020-10-22通讯作者:
陈骏 E-mail:chenjundl@vip.sina.com基金资助:
Zhang Min, Zhou Lina, Xu Shanshan, Chen Jun()
Received:
2019-11-05Revised:
2020-03-11Online:
2020-08-08Published:
2020-10-22Contact:
Chen Jun E-mail:chenjundl@vip.sina.comSupported by:
摘要:
肿瘤免疫治疗是一种主要针对程序性死亡蛋白-1(PD-1)及其配体PD-L1的治疗方法。PD-1/PD-L1抑制剂在多种肿瘤中具有非常明显的临床获益和持久反应,但是整体反应率仍较低。研究发现PD-L1和肿瘤突变负荷可以预测免疫治疗效果,MSI-H/dMMR、TP53和KRAS等基因突变与免疫治疗疗效呈正相关;而MDM2/4、EGFR、ALK等基因则与免疫治疗效果呈负相关。
张敏, 周丽娜, 徐姗姗, 陈骏. 肿瘤免疫治疗相关预测生物标志物研究进展[J]. 国际肿瘤学杂志, 2020, 47(8): 487-491.
Zhang Min, Zhou Lina, Xu Shanshan, Chen Jun. Research progress in predictive biomarkers related to tumor immunotherapy[J]. Journal of International Oncology, 2020, 47(8): 487-491.
[1] | Champiat S, Ferrara R, Massard C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018,15(12):748-762. DOI: 10.1038/s41571-018-0111-2. doi:10.1038/s41571-018-0111-2pmid:30361681 |
[2] | Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016,387(10027):1540-1550. DOI: 10.1016/S0140-6736(15)01281-7. doi:10.1016/S0140-6736(15)01281-7pmid:26712084 |
[3] | Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016,375(19):1823-1833. DOI: 10.1056/NEJMoa1606774. |
[4] | Reck M, Rodríguez-Abreu D, Robinson AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemothe-rapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater[J]. J Clin Oncol, 2019,37(7):537-546. DOI: 10.1200/JCO.18.00149. doi:10.1200/JCO.18.00149pmid:30620668 |
[5] | Burgess EF, Livasy C, Hartman A, et al. Discordance of high PD-L1 expression in primary and metastatic urothelial carcinoma lesions[J]. Urol Oncol, 2019,37(5):299.e19-299.e25. DOI: 10.1016/j.urolonc.2019.01.002. |
[6] | Li M, Li A, Zhou S, et al. Heterogeneity of PD-L1 expression in primary tumors and paired lymph node metastases of triple negative breast cancer[J]. BMC Cancer, 2018,18(1):4. DOI: 10.1186/s12885-017-3916-y. pmid:29291717 |
[7] | Hong LZ, Dibaj S, Negrao MV, et al. Spatial and temporal heterogeneity of PD-L1 and its impact on benefit from immune checkpoint blockade in non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2019, 37 Supple 15 9017. DOI: 10.1200/JCO.2019.37.15_suppl.9017. |
[8] | Meng X, Huang Z, Teng F, et al. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy[J]. Cancer Treat Rev, 2015,41(10):868-876. DOI: 10.1016/j.ctrv.2015.11.001. |
[9] | Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018,378(22):2093-2104. DOI: 10.1056/NEJMoa1801946. |
[10] | Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers[J]. Mol Cancer Ther, 2017,16(11):2598-2608. DOI: 10.1158/1535-7163.MCT-17-0386. pmid:28835386 |
[11] | Wang Z, Duan J, Cai S, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel[J]. JAMA Oncol, 2019,5(5):696-702. DOI: 10.1001/jamaoncol.2018.7098. pmid:30816954 |
[12] | Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Gene, 2019,51(2):202-206. DOI: 10.1038/s41588-018-0312-8. |
[13] | O'Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma[J]. PLoS One, 2017,12(12):e0189848. DOI: 10.1371/journal.pone.0189848. |
[14] | Soussi T, Wiman KG. TP53: an oncogene in disguise[J]. Cell Death Differ, 2015,22(8):1239-1249. DOI: 10.1038/cdd.2015.53. |
[15] | Gibbons DL, Byers LA, Kurie JM. Smoking, p53 mutation, and lung cancer[J]. Mol Cancer Res, 2014,12(1):3-13. DOI: 10.1158/1541-7786.MCR-13-0539. |
[16] | Biton J, Mansuet-Lupo A, Pécuchet N, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma[J]. Clin Cancer Res, 2018,24(22):5710-5723. DOI: 10.1158/1078-0432.CCR-18-0163. |
[17] | Cortez MA, Ivan C, Valdecanas D, et al. PDL1 regulation by p53 via miR-34[J]. J Natl Cancer Inst, 2016, 108(1): djv303. DOI: 10.1093/jnci/djv303. |
[18] | Ji M, Liu Y, Li Q, et al. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations[J]. Cancer Biol Ther, 2016,17(4):407-413. DOI: 10.1080/15384047.2016.1156256. |
[19] | Dong ZY, Zhong WZ, Zhang XC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma[J]. Clin Cancer Res, 2017,23(12):3012-3024. DOI: 10.1158/1078-0432.CCR-16-2554. |
[20] | Champiat S, Dercle L, Ammari S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017,23(8):1920-1928. DOI: 10.1158/1078-0432.CCR-16-1741. pmid:27827313 |
[21] | Kato S, Goodman A, Walavalkar V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017,23(15):4242-4250. DOI: 10.1158/1078-0432.CCR-16-3133. pmid:28351930 |
[22] | Gainor JF, Shaw AT, Sequist LV, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis[J]. Clin Cancer Res, 2016,22(18):4585-4593. DOI: 10.1158/1078-0432.CCR-15-3101. pmid:27225694 |
[23] | Bassi C, Ho J, Srikumar T, et al. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress[J]. Science, 2013,341(6144):395-399. DOI: 10.1126/science.1236188. doi:10.1126/science.1236188pmid:23888040 |
[24] | Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy[J]. Cancer Discov, 2016,6(2):202-216. DOI: 10.1158/2159-8290.CD-15-0283. pmid:26645196 |
[25] | Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016,375(9):819-829. DOI: 10.1056/NEJMoa1604958. |
[26] | Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis[J]. Lancet Respir Med, 2018,6(10):771-781. DOI: 10.1016/S2213-2600(18)30284-4. |
[27] | Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016,1(3):207-216. DOI: 10.1016/S2468-1253(16)30014-0. |
[28] | Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015,348(6230):124-128. DOI: 10.1126/science.aaa1348. pmid:25765070 |
[29] | Wakelee H, Aredo J, Vali S, et al. Prediction of PD-1 immunothe-rapy (IO) response for KRAS mutated non-small cell lung cancer (NSCLC) based on co-mutations using a computational biological model[J]. Ann Oncol, 2018, 29 Suppl 8: viii510-viii511. DOI: 10.1093/annonc/mdy292. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华.炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||