国际肿瘤学杂志››2021,Vol. 48››Issue (9): 557-559.doi:10.3760/cma.j.cn371439-20201122-00108
收稿日期:
2020-11-22修回日期:
2020-12-28出版日期:
2021-09-08发布日期:
2021-09-22通讯作者:
孔为民 E-mail:kwm1967@ccmu.edu.cn基金资助:
Received:
2020-11-22Revised:
2020-12-28Online:
2021-09-08Published:
2021-09-22Contact:
Kong Weimin E-mail:kwm1967@ccmu.edu.cnSupported by:
摘要:
基底刚度是细胞外基质重要的力学参数之一。不同的基底刚度均可影响肿瘤细胞的增殖、运动和细胞表型等细胞生物学行为。基底刚度变化与肿瘤细胞的放化疗敏感性相关,可引起肿瘤干细胞特性的改变和某些信号通路激活或失活,主要涉及ABCG2蛋白和Akt/mTOR/Sox2信号通路。进一步探讨基底刚度在恶性肿瘤放化疗以及靶向治疗中的作用,有望为恶性肿瘤的临床治疗提供依据。
邓波儿, 孔为民. 基底刚度在恶性肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2021, 48(9): 557-559.
Deng Bo'er, Kong Weimin. Role of substrate stiffness in the treatment of malignant tumor[J]. Journal of International Oncology, 2021, 48(9): 557-559.
[1] | Darnell M, Gu L, Mooney D. RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells[J]. Biomaterials, 2018, 181:182-188. DOI: 10.1016/j.biomaterials.2018.07.039. doi:S0142-9612(18)30524-6pmid:30086447 |
[2] | Fiejdasz S, Horak W, Lewandowska-Łańcucka J, et al. Tuning of elasticity and surface properties of hydrogel cell culture substrates by simple chemical approach[J]. J Colloid Interface Sci, 2018, 524:102-113. DOI: 10.1016/j.jcis.2018.04.004. doi:10.1016/j.jcis.2018.04.004 |
[3] | Jiang T, Zhao J, Yu S, et al. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels[J]. Biomaterials, 2019, 188:130-143. DOI: 10.1016/j.biomaterials.2018.10.015. doi:10.1016/j.biomaterials.2018.10.015 |
[4] | Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis[J]. Clin Exp Metastasis, 2019, 36(3):171-198. DOI: 10.1007/s10585-019-09966-1. doi:10.1007/s10585-019-09966-1 |
[5] | Munoz A, Eldridge WJ, Jakobsen NM, et al. Corrigendum: cellular shear stiffness reflects progression of arsenic-induced transformation during G1[J]. Carcinogenesis, 2019, 40(10):1298. DOI: 10.1093/carcin/bgz048. doi:10.1093/carcin/bgz048 |
[6] | Shukla VC, Higuita-Castro N, Nana-Sinkam P, et al. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition[J]. J Biomed Mater Res A, 2016, 104(5):1182-1193. DOI: 10.1002/jbm.a.35655. doi:10.1002/jbm.a.35655pmid:26779779 |
[7] | Qin X, Lv X, Li P, et al. Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(3):165625. DOI: 10.1016/j.bbadis.2019.165625. doi:10.1016/j.bbadis.2019.165625 |
[8] | 焦思萌, 赵轩宇, 宋丹, 等. 基底刚度对人宫颈癌HeLa细胞增殖及顺铂药物敏感性影响的体外研究[J]. 癌症进展, 2019, 17(22):2642-2644, 2651. DOI: 10.11877/j.issn.1672-1535.2019.17.22.09. doi:10.11877/j.issn.1672-1535.2019.17.22.09 |
[9] | Wang W, Lollis EM, Bordeleau F, et al. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity[J]. FASEB J, 2019, 33(1):1199-1208. DOI: 10.1096/fj.201800841R. doi:10.1096/fj.201800841R |
[10] | Chae YC, Kim JH. Cancer stem cell metabolism: target for cancer therapy[J]. BMB Rep, 2018, 51(7):319-326. DOI: 10.5483/bmbrep.2018.51.7.112. doi:10.5483/bmbrep.2018.51.7.112 |
[11] | Chen Z, Zhu P, Zhang Y, et al. Enhanced sensitivity of cancer stem cells to chemotherapy using functionalized mesoporous silica nanoparticles[J]. Mol Pharm, 2016, 13(8):2749-2759. DOI: 10.1021/acs.molpharmaceut.6b00352. doi:10.1021/acs.molpharmaceut.6b00352 |
[12] | Wang Y, Jiang F, Jiao K, et al. De-methylation of miR-148a by arsenic trioxide enhances sensitivity to chemotherapy via inhibiting the NF-κB pathway and CSC like properties[J]. Exp Cell Res, 2020, 386(2):111739. DOI: 10.1016/j.yexcr.2019.111739. doi:10.1016/j.yexcr.2019.111739 |
[13] | Hu J, Li J, Yue X, et al. Targeting BCRP/ABCG2 by RNA interference enhances the chemotherapy sensitivity of human colon cancer side population cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2017, 37(2):231-236. DOI: 10.1007/s11596-017-1720-1. doi:10.1007/s11596-017-1720-1 |
[14] | Hui L, Zhang J, Ding X, et al. Matrix stiffness regulates the proli-feration, stemness and chemoresistance of laryngeal squamous cancer cells[J]. Int J Oncol, 2017, 50(4):1439-1447. DOI: 10.3892/ijo.2017.3877. doi:10.3892/ijo.2017.3877 |
[15] | Amawi H, Sim HM, Tiwari AK, et al. ABC transporter-mediated multidrug-resistant cancer[J]. Adv Exp Med Biol, 2019, 1141:549-580. DOI: 10.1007/978-981-13-7647-4_12. doi:10.1007/978-981-13-7647-4_12 |
[16] | Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer[J]. Nat Rev Cancer, 2018, 18(7):452-464. DOI: 10.1038/s41568-018-0005-8. doi:10.1038/s41568-018-0005-8 |
[17] | Sicchieri RD, da Silveira WA, Mandarano LR, et al. ABCG2 is a potential marker of tumor-initiating cells in breast cancer[J]. Tumour Biol, 2015, 36(12):9233-9243. DOI: 10.1007/s13277-015-3647-0. doi:10.1007/s13277-015-3647-0 |
[18] | You Y, Zheng Q, Dong Y, et al. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells[J]. Oncotarget, 2016, 7(22):32221-32231. DOI: 10.18632/oncotarget.8515. doi:10.18632/oncotarget.8515 |
[19] | De Ruysscher D, Niedermann G, Burnet NG, et al. Radiotherapy toxicity[J]. Nat Rev Dis Primers, 2019, 5(1):13. DOI: 10.1038/s41572-019-0064-5. doi:10.1038/s41572-019-0064-5pmid:30792503 |
[20] | Cree A, O'Donovan A, O'Hanlon S. New horizons in radiotherapy for older people[J]. Age Ageing, 2019, 48(5):605-612. DOI: 10.1093/ageing/afz089. doi:10.1093/ageing/afz089 |
[21] | Panzetta V, Verde G, Pugliese M, et al. Adhesion and migration response to radiation therapy of mammary epithelial and adenocarcinoma cells interacting with different stiffness substrates[J]. Cancers (Basel), 2020, 12(5):1170. DOI: 10.3390/cancers12051170. doi:10.3390/cancers12051170 |
[22] | Lacombe J, Harris AF, Zenhausern R, et al. Plant-based scaffolds modify cellular response to drug and radiation exposure compared to standard cell culture models[J]. Front Bioeng Biotechnol, 2020, 8:932. DOI: 10.3389/fbioe.2020.00932. doi:10.3389/fbioe.2020.00932 |
[23] | Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389(10064):56-66. DOI: 10.1016/S0140-6736(16)32453-9. doi:10.1016/S0140-6736(16)32453-9 |
[24] | Gao J, Rong Y, Huang Y, et al. Cirrhotic stiffness affects the migration of hepatocellular carcinoma cells and induces sorafenib resis-tance through YAP[J]. J Cell Physiol, 2019, 234(3):2639-2648. DOI: 10.1002/jcp.27078. doi:10.1002/jcp.27078 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[8] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[9] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[10] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[11] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[12] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[13] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||