国际肿瘤学杂志››2022,Vol. 49››Issue (8): 490-493.doi:10.3760/cma.j.cn371439-20220429-00094
收稿日期:
2022-04-29修回日期:
2022-06-03出版日期:
2022-08-08发布日期:
2022-09-21通讯作者:
芦永福 E-mail:gyxb123@163.com基金资助:
Huang Mengpan1, Wang Xuehong2, Lu Yongfu2()
Received:
2022-04-29Revised:
2022-06-03Online:
2022-08-08Published:
2022-09-21Contact:
Lu Yongfu E-mail:gyxb123@163.comSupported by:
摘要:
叉头框蛋白A2(FOXA2)以其独特的DNA结合域为特征,在转录调节中起着关键的作用。FOXA2转录因子在结直肠癌中呈高表达,可与相应靶向基因结合调控肿瘤生长和炎症反应,从而发挥癌基因的作用。深入了解人类FOXA2转录因子在结直肠癌中的作用和功能,有助于进一步开发其作为结直肠癌的潜在治疗靶点和诊断及预后标志物。
黄梦盼, 王学红, 芦永福. FOXA2在结直肠癌中的作用机制及其在诊疗中的作用[J]. 国际肿瘤学杂志, 2022, 49(8): 490-493.
Huang Mengpan, Wang Xuehong, Lu Yongfu. Mechanism of FOXA2 in colorectal cancer and its application in diagnosis and treatment[J]. Journal of International Oncology, 2022, 49(8): 490-493.
[1] | Li C, Liu T, Liu Y, et al. Prognostic value of tumour microen-vironment-related genes by TCGA database in rectal cancer[J]. J Cell Mol Med, 2021, 25(12): 5811-5822. DOI: 10.1111/jcmm.16547. doi:10.1111/jcmm.16547 |
[2] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. doi:10.3322/caac.21660 |
[3] | Zhang N, Ng AS, Cai S, et al. Novel therapeutic strategies: targe-ting epithelial-mesenchymal transition in colorectal cancer[J]. Lancet Oncol, 2021, 22(8): e358-e368. DOI: 10.1016/S1470-2045(21)00343-0. doi:10.1016/S1470-2045(21)00343-0pmid:34339656 |
[4] | Erfani M, Zamani M, Hosseini SY, et al. ARID1A regulates E-cadherin expression in colorectal cancer cells: a promising candidate therapeutic target[J]. Mol Biol Rep, 2021, 48(10): 6749-6756. DOI: 10.1007/s11033-021-06671-9. doi:10.1007/s11033-021-06671-9 |
[5] | Bow YD, Wang YY, Chen YK, et al. Silencing of FOXA2 decreases E-cadherin expression and is associated with lymph node metastasis in oral cancer[J]. Oral Dis, 2020, 26(4): 756-765. DOI: 10.1111/odi.13282. doi:10.1111/odi.13282 |
[6] | Wang B, Liu G, Ding L, et al. FOXA2 promotes the proliferation, migration and invasion, and epithelial mesenchymal transition in colon cancer[J]. Exp Ther Med, 2018, 16(1): 133-140. DOI: 10.3892/etm.2018.6157. doi:10.3892/etm.2018.6157 |
[7] | Huang Y, Shen XJ, Zou Q, et al. Biological functions of micro-RNAs: a review[J]. J Physiol Biochem, 2011, 67(1): 129-139. DOI: 10.1007/s13105-010-0050-6. doi:10.1007/s13105-010-0050-6pmid:20981514 |
[8] | Iorio MV, Croce CM. MicroRNA involvement in human cancer[J]. Carcinogenesis, 2012, 33(6): 1126-1133. DOI: 10.1093/carcin/bgs140. doi:10.1093/carcin/bgs140 |
[9] | Sun C, Li S, Yang C, et al. MicroRNA-187-3p mitigates non-small cell lung cancer (NSCLC) development through down-regulation of BCL6[J]. Biochem Biophys Res Commun, 2016, 471(1): 82-88. DOI: 10.1016/j.bbrc.2016.01.175. doi:10.1016/j.bbrc.2016.01.175 |
[10] | Casanova-Salas I, Masiá E, Armiñán A, et al. MiR-187 targets the androgen-regulated gene ALDH1A3 in prostate cancer[J]. PLoS One, 2015, 10(5): e0125576. DOI: 10.1371/journal.pone.0125576. doi:10.1371/journal.pone.0125576 |
[11] | Mulrane L, Madden SF, Brennan DJ, et al. MiR-187 is an independent prognostic factor in breast cancer and confers increased invasive potential in vitro[J]. Clin Cancer Res, 2012, 18(24): 6702-6713. DOI: 10.1158/1078-0432.CCR-12-1420. doi:10.1158/1078-0432.CCR-12-1420 |
[12] | Zhang F, Luo Y, Shao Z, et al. MicroRNA-187, a downstream effector of TGFβ pathway, suppresses Smad-mediated epithelial-mesenchymal transition in colorectal cancer[J]. Cancer Lett, 2016, 373(2): 203-213. DOI: 10.1016/j.canlet.2016.01.037. doi:10.1016/j.canlet.2016.01.037 |
[13] | Li C, Lu S, Shi Y. MicroRNA-187 promotes growth and metastasis of gastric cancer by inhibiting FOXA2[J]. Oncol Rep, 2017, 37(3): 1747-1755. DOI: 10.3892/or.2017.5370. doi:10.3892/or.2017.5370 |
[14] | Wang J, Li B, Zhao K, et al. 2-Amino-4-(1-piperidine) pyridine exhibits inhibitory effect on colon cancer through suppression of FOXA2 expression[J]. 3 Biotech, 2019, 9(11): 384. DOI: 10.1007/s13205-019-1915-1. doi:10.1007/s13205-019-1915-1 |
[15] | Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy[J]. BMB Rep, 2019, 52(7): 415-423. DOI: 10.5483/BMBRep.2019.52.7.152. doi:10.5483/BMBRep.2019.52.7.152 |
[16] | Zou S, Tong Q, Liu B, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer, 2020, 19(1): 145. DOI: 10.1186/s12943-020-01258-7. doi:10.1186/s12943-020-01258-7 |
[17] | Wang J, Lu H, Wang W, et al. Hepatocyte nuclear factor 3β plays a suppressive role in colorectal cancer progression[J]. Front Oncol, 2019, 9: 1096. DOI: 10.3389/fonc.2019.01096. doi:10.3389/fonc.2019.01096 |
[18] | Chen R, Wang L, Zhao Q, et al. Platelet-to-lymphocyte ratio and C-reactive protein as markers for colorectal polyp histological type[J]. BMC Cancer, 2021, 21(1): 556. DOI: 10.1186/s12885-021-08221-9. doi:10.1186/s12885-021-08221-9pmid:34001040 |
[19] | Boregowda U, Desai M, Nutalapati V, et al. Impact of feedback on adenoma detection rate: a systematic review and meta-analysis[J]. Ann Gastroenterol, 2021, 34(2): 214-223. DOI: 10.20524/aog.2021.0591. doi:10.20524/aog.2021.0591 |
[20] | 朱晓佳, 杨力. 结肠镜腺瘤检出率的近期研究进展[J]. 世界华人消化杂志, 2021, 29(22): 1304-1310. DOI: 10.11569/wcjd.v28.i22.1304. doi:10.11569/wcjd.v28.i22.1304 |
[21] | 鞠乐乐, 颜玉, 陈曦, 等. 内镜下结直肠息肉临床特点及病理分析[J]. 黑龙江医药科学, 2019, 42(6): 14-15. DOI: 10.3969/j.issn.1008-0104.2019.06.005. doi:10.3969/j.issn.1008-0104.2019.06.005 |
[22] | 彭好, 沈磊. Foxa2在结直肠息肉和结直肠癌中的表达及其意义[J]. 胃肠病学, 2019, 24(11): 655-659. DOI: 10.3969/j.issn.1008-7125.2019.11.004. doi:10.3969/j.issn.1008-7125.2019.11.004 |
[23] | Lehner F, Kulik U, Klempnauer J, et al. The hepatocyte nuclear factor 6 (HNF6) and FOXA2 are key regulators in colorectal liver metastases[J]. FASEB J, 2007, 21(7): 1445-1462. DOI: 10.1096/fj.06-6575com. doi:10.1096/fj.06-6575compmid:17283222 |
[24] | Zhan X, Zhao A. Transcription factor FOXA3 promotes the deve-lopment of hepatoblastoma via regulating HNF1A, AFP, and ZFHX3 expression[J]. J Clin Lab Anal, 2021, 35(3): e23686. DOI: 10.1002/jcla.23686. doi:10.1002/jcla.23686 |
[25] | Teng S, Li YE, Yang M, et al. Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer[J]. Cell Res, 2020, 30(1): 34-49. DOI: 10.1038/s41422-019-0259-z. doi:10.1038/s41422-019-0259-z |
[1] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[4] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[5] | 刘德宝, 孙子雯, 鲁守堂, 徐海东.ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[6] | 陈卓, 陶俊, 陈琳, 柯晶.外周血miR-194联合粪便miR-143检测对结直肠癌临床筛查的价值[J]. 国际肿瘤学杂志, 2023, 50(5): 268-273. |
[7] | 黄镇, 张蔡羽天, 柯少波, 石薇, 赵文思, 陈永顺.结直肠癌患者术后预后模型的构建[J]. 国际肿瘤学杂志, 2023, 50(3): 157-163. |
[8] | 徐良富, 李袁飞.MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[9] | 刘玉杰, 赵志强, 王子琤.早期结直肠癌患者外周血单个核细胞中TOP2A、ERBB2的水平及其诊断价值[J]. 国际肿瘤学杂志, 2023, 50(12): 717-722. |
[10] | 陶红, 殷红, 罗宏, 陶佳瑜.靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[11] | 王熙, 吴川清.结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. |
[12] | 高一钊, 刘洋, 刘秋龙, 邢金良.循环游离核酸在结直肠癌临床诊疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 555-559. |
[13] | 何哲锋, 吴燚阳, 李振军, 应晓江.炎性相关标志物对结直肠癌的预测价值[J]. 国际肿瘤学杂志, 2022, 49(9): 560-563. |
[14] | 赵莹, 张革红.AGR、PLR及NLR变化与转移性结直肠癌化疗疗效的相关性研究[J]. 国际肿瘤学杂志, 2022, 49(8): 473-477. |
[15] | 刘松, 于广计, 王庆东.DEBIRI-TACE联合瑞戈非尼三线以上治疗结直肠癌肝转移的疗效及影响因素分析[J]. 国际肿瘤学杂志, 2022, 49(7): 400-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||