国际肿瘤学杂志››2023,Vol. 50››Issue (5): 290-293.doi:10.3760/cma.j.cn371439-20220726-00058
收稿日期:
2022-07-26修回日期:
2022-11-16出版日期:
2023-05-08发布日期:
2023-06-27通讯作者:
张百红 E-mail:bhzhang1999@126.com基金资助:
Yue Hongyun1, Zhang Baihong2()
Received:
2022-07-26Revised:
2022-11-16Online:
2023-05-08Published:
2023-06-27Contact:
Zhang Baihong E-mail:bhzhang1999@126.comSupported by:
摘要:
免疫检查点由抑制性和刺激性分子组成,抑制性检查点程序性死亡蛋白1(PD-1)和细胞毒性T淋巴细胞抗原4(CTLA-4)抑制剂已经广泛用于肿瘤临床治疗,刺激性检查点GITR、OX40、4-1BB、ICOS、CD40和STING激动剂正在进行临床试验。影响刺激性检查点分子的免疫检查点激动剂发展迅速,免疫激动剂抗体将成为治疗实体瘤的重要药物。
岳红云, 张百红. 免疫检查点激动剂治疗实体瘤的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 290-293.
Yue Hongyun, Zhang Baihong. Research progress of immune checkpoint agonist for solid tumor treatments[J]. Journal of International Oncology, 2023, 50(5): 290-293.
表1
常见免疫检查点分子及激动剂"
受体和配体 | 作用机制 | 试验阶段 | 代表药物 |
---|---|---|---|
GITR-GITRL | 促进Teff细胞激活和增殖,减少Treg细胞 | Ⅱ期 | TRX518、MK-1248[
|
OX40-OX40L | 促进Teff细胞和记忆T细胞存活 | Ⅱ期 | MEDI6469[
|
4-1BB-4-1BBL | 促进T细胞增殖和提高线粒体功能 | Ⅰ期 | 乌托鲁单抗、乌瑞芦单抗[
|
ICOS-ICOSL | 促进TCR共刺激和Treg细胞激活 | Ⅰ期 | GSK3359609[
|
CD40-CD40L | 促进T细胞激活和浸润 | Ⅰ期 | CP-870893、Sotigalimab[
|
cGAS-STING | 提高抗肿瘤免疫反应 | 临床前研究 | MSA-2[
|
[1] | Ribas A. Releasing the brakes on cancer immunotherapy[J]. N Engl J Med, 2015, 373(16): 1490-1492. DOI: 10.1056/NEJMp1510079. doi:10.1056/NEJMp1510079 |
[2] | Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer[J]. Nat Rev Drug Discov, 2018, 17(7): 509-527. DOI: 10.1038/nrd.2018.75. doi:10.1038/nrd.2018.75pmid:29904196 |
[3] | Flemming A. Bispecific agonist boosts anti-tumour T cells via GITR[J]. Nat Rev Immunol, 2022, 22(4): 208. DOI: 10.1038/s41577-022-00708-1. doi:10.1038/s41577-022-00708-1 |
[4] | Chan S, Belmar N, Ho S, et al. An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy[J]. Nat Cancer, 2022, 3(3): 337-354. DOI: 10.1038/s43018-022-00334-9. doi:10.1038/s43018-022-00334-9 |
[5] | Killock D. GITR agonism—combination is key[J]. Nat Rev Clin Oncol, 2019, 16(7): 402. DOI: 10.1038/s41571-019-0221-5. doi:10.1038/s41571-019-0221-5pmid:31065053 |
[6] | He C, Maniyar RR, Avraham Y, et al. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism[J]. Sci Adv, 2022, 8(8): eabm4552. DOI: 10.1126/sciadv.abm4552. doi:10.1126/sciadv.abm4552 |
[7] | Geva R, Voskoboynik M, Dobrenkov K, et al. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors[J]. Cancer, 2020, 126(22): 4926-4935. DOI: 10.1002/cncr.33133. doi:10.1002/cncr.33133 |
[8] | Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2021, 184(21): 5309-5337. DOI: 10.1016/j.cell.2021.09.020. doi:10.1016/j.cell.2021.09.020pmid:34624224 |
[9] | Duhen R, Ballesteros-Merino C, Frye AK, et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells[J]. Nat Commun, 2021, 12(1): 1047. DOI: 10.1038/s41467-021-21383-1. doi:10.1038/s41467-021-21383-1pmid:33594075 |
[10] | Sagiv-Barfi I, Czerwinski DK, Shree T, et al. Intratumoral immunotherapy relies on B and T cell collaboration[J]. Sci Immunol, 2022, 7(71): eabn5859. DOI: 10.1126/sciimmunol.abn5859. doi:10.1126/sciimmunol.abn5859 |
[11] | Chin SM, Kimberlin CR, Roe-Zurz Z, et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab[J]. Nat Commun, 2018, 9(1): 4679. DOI: 10.1038/s41467-018-07136-7. doi:10.1038/s41467-018-07136-7pmid:30410017 |
[12] | Segal NH, He AR, Doi T, et al. Phase Ⅰ study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer[J]. Clin Cancer Res, 2018, 24(8): 1816-1823. DOI: 10.1158/1078-0432.CCR-17-1922. doi:10.1158/1078-0432.CCR-17-1922pmid:29549159 |
[13] | You G, Lee Y, Kang YW, et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+tumor-infiltrating lymphocytes[J]. Sci Adv, 2021, 7(3): eaax3160. DOI: 10.1126/sciadv.aax3160. doi:10.1126/sciadv.aax3160 |
[14] | Geuijen C, Tacken P, Wang LC, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade[J]. Nat Commun, 2021, 12(1): 4445. DOI: 10.1038/s41467-021-24767-5. doi:10.1038/s41467-021-24767-5pmid:34290245 |
[15] | Claus C, Ferrara C, Xu W, et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy[J]. Sci Transl Med, 2019, 11(496): eaav5989. DOI: 10.1126/scitranslmed.aav5989. doi:10.1126/scitranslmed.aav5989 |
[16] | Peng CW, Huggins MA, Wanhainen KM, et al. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+tissue-resident memory T cells[J]. Immunity, 2022, 55(1): 98-114.e5. DOI: 10.1016/j.immuni.2021.11.017. doi:10.1016/j.immuni.2021.11.017 |
[17] | Garber K. Immune agonist antibodies face critical test[J]. Nat Rev Drug Discov, 2020, 19(1): 3-5. DOI: 10.1038/d41573-019-00214-5. doi:10.1038/d41573-019-00214-5pmid:31907434 |
[18] | Kvedaraite E, Ginhoux F. Human dendritic cells in cancer[J]. Sci Immunol, 2022, 7(70): eabm9409. DOI: 10.1126/sciimmunol.abm9409. doi:10.1126/sciimmunol.abm9409 |
[19] | Choi Y, Shi Y, Haymaker CL, et al. T-cell agonists in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000966. DOI: 10.1136/jitc-2020-000966. doi:10.1136/jitc-2020-000966 |
[20] | Carmona J. Immunity boost against pancreatic cancer[J/OL]. Nat Med. [2021-03-03][2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/33658709/. DOI: 10.1038/d41591-021-00012-w. doi:10.1038/d41591-021-00012-w |
[21] | O'Hara MH, O'Reilly EM, Varadhachary G, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2021, 22(1): 118-131. DOI: 10.1016/S1470-2045(20)30532-5. doi:10.1016/S1470-2045(20)30532-5pmid:33387490 |
[22] | Bajor DL, Mick R, Riese MJ, et al. Long-term outcomes of a phase Ⅰ study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma[J]. Oncoimmunology, 2018, 7(10): e1468956. DOI: 10.1080/2162402X.2018.1468956. doi:10.1080/2162402X.2018.1468956 |
[23] | Salomon R, Rotem H, Katzenelenbogen Y, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting[J]. Nat Cancer, 2022, 3(3): 287-302. DOI: 10.1038/s43018-022-00329-6. doi:10.1038/s43018-022-00329-6 |
[24] | Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders[J]. Nat Rev Drug Discov, 2022, 21(8): 559-577. DOI: 10.1038/s41573-022-00413-7. doi:10.1038/s41573-022-00413-7pmid:35314852 |
[25] | Wolf NK, Blaj C, Picton LK, et al. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC Ⅰ-deficient and MHC Ⅰ+tumors[J]. Proc Natl Acad Sci U S A, 2022, 119(22): e2200568119. DOI: 10.1073/pnas.2200568119. doi:10.1073/pnas.2200568119 |
[26] | Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. DOI: 10.1126/science.aba6098. doi:10.1126/science.aba6098 |
[27] | Gajewski TF, Higgs EF. Immunotherapy with a sting[J]. Science, 2020, 369(6506): 921-922. DOI: 10.1126/science.abc6622. doi:10.1126/science.abc6622pmid:32820113 |
[28] | Gong N, Mitchell MJ. Lipid nanodiscs give cancer a STING[J]. Nat Mater, 2022, 21(6): 616-617. DOI: 10.1038/s41563-022-01270-w. doi:10.1038/s41563-022-01270-w |
[29] | Dane EL, Belessiotis-Richards A, Backlund C, et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity[J]. Nat Mater, 2022, 21(6): 710-720. DOI: 10.1038/s41563-022-01251-z. doi:10.1038/s41563-022-01251-z |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[8] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[9] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[10] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[11] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[12] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[13] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||