国际肿瘤学杂志››2023,Vol. 50››Issue (11): 677-682.doi:10.3760/cma.j.cn371439-20230510-00128
李佳宜1,2,3, 王跃1,2,3, 尚兰兰1,2, 徐兴2,3,4, 赵岩1,2,3,4()
收稿日期:
2023-05-10修回日期:
2023-07-02出版日期:
2023-11-08发布日期:
2024-01-11通讯作者:
赵岩 E-mail:dr.zhaoyan@126.com基金资助:
Li Jiayi1,2,3, Wang Yue1,2,3, Shang Lanlan1,2, Xu Xing2,3,4, Zhao Yan1,2,3,4()
Received:
2023-05-10Revised:
2023-07-02Online:
2023-11-08Published:
2024-01-11Contact:
Zhao Yan E-mail:dr.zhaoyan@126.comSupported by:
摘要:
近年来,人工智能(AI)与肿瘤学迅速融合发展并逐渐走向临床应用。在我国,胃癌的发病率和死亡率在各种肿瘤中位居前列,卷积神经网络、窄带成像放大内窥镜、全视野数字切片、生存循环网络等AI技术的开发,具有应用于胃癌早期筛查、辅助诊断、病理学诊断、预后分析、制定个性化诊疗等方面的潜能。但是AI医疗仍然存在数据样本量不足和整合困难等多种问题。合理设计和应用AI技术有望为胃癌患者提供更为科学准确的诊疗方案,提高胃癌患者的总生存率和生命质量,在医疗领域实现更多突破。
李佳宜, 王跃, 尚兰兰, 徐兴, 赵岩. 人工智能技术在胃癌诊断与治疗中的实践与展望[J]. 国际肿瘤学杂志, 2023, 50(11): 677-682.
Li Jiayi, Wang Yue, Shang Lanlan, Xu Xing, Zhao Yan. Practice and prospect of artificial intelligence in diagnosis and treatment of gastric cancer[J]. Journal of International Oncology, 2023, 50(11): 677-682.
[1] | 中国疾病预防控制中心慢性非传染性疾病预防控制中心, 国家卫生和计划生育委员会统计信息中心.中国死因监测数据集-2016[M]. 北京: 中国科学技术出版社,2017: 26. |
[2] | 张世豪, 冼丽英, 高敏, 等. 基于深度学习的人工智能在病理诊断的应用进展与展望[J].中国医学创新,2018,15(25): 130-133. DOI:10.3969/j.issn.1674-4985.2018.25.035. |
[3] | Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].J Mach Learn Res,2011,12: 2493-2537. DOI:10.5555/1953048.2078186. |
[4] | Simon G, DiNardo CD, Takahashi K, et al. Applying artificial intelligence to address the knowledge gaps in cancer care[J].Oncologist,2019,24(6): 772-782. DOI:10.1634/theoncologist.2018-0257. pmid:30446581 |
[5] | Zheng RS, Zhang SW, Zeng HM, et al. Cancer incidence and mortality in China, 2016[J].Journal of the National Cancer Center,2022,2(1): 1-68. DOI:10.1016/j.jncc.2022.02.002. |
[6] | Szeliski R.Computer vision: algorithms and applications (texts in computer science)[M]. London: Springer,2011. DOI:10.1007/978-1-84882-935-0. |
[7] | Togashi K. Applications of artificial intelligence to endoscopy practice: the view from Japan Digestive Disease Week 2018[J].Dig Endosc,2019,31(3): 270-272. DOI:10.1111/den.13354. pmid:30681203 |
[8] | Watanabe Y, Oikawa R, Agawa S, et al. Combination of artificial intelligence-based endoscopy and miR148a methylation for gastric indefinite dysplasia diagnosis[J].J Clin Lab Anal,2022,36(1): e24122. DOI:10.1002/jcla.24122. |
[9] | Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images[J].Gastric Cancer,2018,21(4): 653-660. DOI:10.1007/s10120-018-0793-2. pmid:29335825 |
[10] | Sakai Y, Takemoto S, Hori K, et al. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network[J].Annu Int Conf IEEE Eng Med Biol Soc,2018,2018: 4138-4141. DOI:10.1109/EMBC.2018.8513274. pmid:30441266 |
[11] | Yu T, Wang X, Zhao Z, et al. Prediction of T stage in gastric carcinoma by enhanced CT and oral contrast-enhanced ultrasonography[J].World J Surg Oncol,2015,13: 184. DOI:10.1186/s12957-015-0577-7. pmid:25986541 |
[12] | Choi J, Kim SG, Im JP, et al. Comparison of endoscopic ultrasonography and conventional endoscopy for prediction of depth of tumor invasion in early gastric cancer[J].Endoscopy,2010,42(9): 705-713. DOI:10.1055/s-0030-1255617. pmid:20652857 |
[13] | Liu DY, Gan T, Rao NN, et al. Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process[J].Med Image Anal,2016,32: 281-294. DOI:10.1016/j.media.2016.04.007. |
[14] | Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging[J].Gastric Cancer,2020,23(1): 126-132. DOI:10.1007/s10120-019-00992-2. pmid:31332619 |
[15] | Luo H, Xu G, Li C, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study[J].Lancet Oncol,2019,20(12): 1645-1654. DOI:10.1016/S1470-2045(19)30637-0. pmid:31591062 |
[16] | Huang Z, Liu D, Chen X, et al. Retrospective imaging studies of gastric cancer: study protocol clinical trial (SPIRIT Compliant)[J].Medicine (Baltimore),2020,99(8): e19157. DOI:10.1097/MD.0000000000019157. |
[17] | Li C, Shi C, Zhang H, et al. Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging[J].J Biomed Inform,2015,57: 358-368. DOI:10.1016/j.jbi.2015.08.017. pmid:26319541 |
[18] | Mukhopadhyay S, Feldman MD, Abels E, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)[J].Am J Surg Pathol,2018,42(1): 39-52. DOI:10.1097/PAS.0000000000000948. pmid:28961557 |
[19] | Li Y, Li X, Xie X, et al. Deep learning based gastric cancer identification[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE,2018: 182-185. DOI:10.1109/ISBI.2018.8363550. |
[20] | Iizuka O, Kanavati F, Kato K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J].Sci Rep,2020,10(1): 1504. DOI:10.1038/s41598-020-58467-9. pmid:32001752 |
[21] | Sato Y, Sese J, Matsuyama T, et al. Preliminary study for develo-ping a navigation system for gastric cancer surgery using artificial intelligence[J].Surg Today,2022,52(12): 1753-1758. DOI:10.1007/s00595-022-02508-5. |
[22] | 金驰, 王彤. 达芬奇机器人在胃癌手术中的应用进展[J].临床外科杂志,2020,28(10): 991-994. DOI:10.3969/j.issn.1005-6483.2020.10.028. |
[23] | 王晓鹏, 郭进, 李渊, 等. 达芬奇机器人联合淋巴示踪在进展期远端胃癌根治术中的应用[J].中国微创外科杂志,2018,18(3): 225-229. DOI:10.3969/j.issn.1009-6604.2018.03.009. |
[24] | Adballah M, Espinel Y, Calvet L, et al. Augmented reality in laparoscopic liver resection evaluated on an ex-vivo animal model with pseudo-tumours[J].Surg Endosc,2022,36(1): 833-843. DOI:10.1007/s00464-021-08798-z. |
[25] | Luo H, Yin D, Zhang S, et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope[J].Comput Methods Programs Biomed,2020,187: 105099. DOI:10.1016/j.cmpb.2019.105099. |
[26] | Lee J, An JY, Choi MG, et al. Deep learning-based survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric cancer[J].JCO Clin Cancer Inform,2018,2: 1-14. DOI:10.1200/CCI.17.00065. pmid:30652558 |
[27] | Jiang Y, Xie J, Han Z, et al. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit[J].Clin Cancer Res,2018,24(22): 5574-5584. DOI:10.1158/1078-0432.CCR-18-0848. pmid:30042208 |
[28] | Lu F, Chen Z, Yuan X, et al. MMHG:multi-modal hypergraph learning for overall survival after D 2 gastrectomy for gastric cancer[C]//2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).Orlando: IEEE,2017: 164-169. DOI:10.1109/DASC-PICom-DataCom-CyberSciTec.2017.40. |
[29] | Korhani Kangi A, Bahrampour A. Predicting the survival of gastric cancer patients using artificial and bayesian neural networks[J].Asian Pac J Cancer Prev,2018,19(2): 487-490. DOI:10.22034/APJCP.2018.19.2.487. |
[30] | Jiang Y, Zhang Z, Yuan Q, et al. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study[J].Lancet Digit Health,2022,4(5): e340-e350. DOI:10.1016/S2589-7500(22)00040-1. |
[31] | Hensler K, Waschulzik T, Mönig SP, et al. Quality-assured Efficient Engineering of Feedforward Neural Networks (QUEEN)-pretherapeutic estimation of lymph node status in patients with gastric carcinoma[J].Methods Inf Med,2005,44(5): 647-654. pmid:16400373 |
[32] | Jagric T, Potrc S, Jagric T. Prediction of liver metastases after gastric cancer resection with the use of learning vector quantization neural networks[J].Dig Dis Sci,2010,55(11): 3252-3261. DOI:10.1007/s10620-010-1155-z. |
[33] | Su F, Sun Y, Hu Y, et al. Development and validation of a deep learning system for ascites cytopathology interpretation[J].Gastric Cancer,2020,23(6): 1041-1050. DOI:10.1007/s10120-020-01093-1. |
[34] | Nakahira H, Ishihara R, Aoyama K, et al. Stratification of gastric cancer risk using a deep neural network[J].JGH Open,2019,4(3): 466-471. DOI:10.1002/jgh3.12281. |
[35] | Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy[J].Gastrointest Endosc,2019,89(4): 806-815.e1. DOI:10.1016/j.gie.2018.11.011. pmid:30452913 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[5] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[6] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[7] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[8] | 陈琦, 徐晨阳, 王寅, 雷大鹏.高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
[9] | 顾芳萌, 徐晨阳, 雷大鹏.人工智能辅助电子喉镜检查在喉癌及喉癌前病变诊治中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 303-307. |
[10] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[11] | 王昆, 周中新, 臧其威.血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[12] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[13] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[14] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[15] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||