国际肿瘤学杂志››2013,Vol. 40››Issue (12): 892-895.doi:10.3760/cma.j.issn.1673-422X.2013.12.004
付成瑞, 李宝生
出版日期:
2013-12-10发布日期:
2013-12-26通讯作者:
李宝生 E-mail:baoshli@yahoo.com基金资助:
山东省科技发展计划(2013GSF11819)
FU Cheng-Rui, LI Bao-Sheng
Online:
2013-12-10Published:
2013-12-26Contact:
LI Bao-Sheng E-mail:baoshli@yahoo.com摘要:【摘要】山奈酚是一种广泛存在于水果、蔬菜、中草药等天然植物中的黄酮类化合物,具有抗肿瘤、抗氧化、抗炎、抗焦虑、镇痛和抗过敏等广泛的药理作用。研究发现,山奈酚可降低罹患癌症的风险,可通过诱导细胞凋亡、调节细胞周期、抑制新生血管生成和肿瘤转移等作用抑制肿瘤细胞增殖和侵袭,并可通过调节氧化应激反应和抑制炎性因子发挥抗肿瘤作用,在肿瘤防治中具有广阔的应用前景。
付成瑞, 李宝生. 山奈酚的抗肿瘤作用[J]. 国际肿瘤学杂志, 2013, 40(12): 892-895.
FU Cheng-Rui, LI Bao-Sheng. Antitumor mechanism of kaempferol[J]. Journal of International Oncology, 2013, 40(12): 892-895.
[1] Li W, Du B, Wang T, et al. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the AtaxiaTelangiectasia Mutatedp53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem Biol Interact, 2009, 177(2): 121127. [2] Zhang Q, Zhao XH, Wang ZJ. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE510) by induction of G2/M arrest and apoptosis. Toxicol In Vitro, 2009, 23(5): 797807. [3] Kang GY, Lee ER, Kim JH, et al. Downregulation of PLK1 expression in kaempferolinduced apoptosis of MCF7 cells. Eur J Pharmacol, 2009, 611(13): 1721. [4] Marfe G, Tafani M, Indelicato M, et al. Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biochem, 2009, 106(4): 643650. [5] Huang WW, Tsai SC, Peng SF, et al. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SKHEP1 human hepatic cancer cells. Int J Oncol, 2013, 42(6): 20692077. [6] Luo H, Daddysman MK, Rankin GO, et al. Kaempferol enhances cisplatin′s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int, 2010, 10: 16. [7] Luo H, Rankin GO, Li Z, et al. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem, 2011, 128(2): 513519. [8] Ria R, Reale A, De Luisi A, et al. Bone marrow angiogenesis and progression in multiple myeloma. Am J Blood Res, 2011, 1(1): 7689. [9] Luo H, Rankin GO, Juliano N, et al. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERKNFkappaBcMycp21 pathway. Food Chem, 2012, 130(2): 321328. [10] Luo H, Rankin GO, Liu L, et al. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer, 2009, 61(4): 554563. [11] HadlerOlsen E, Winberg JO, UhlinHansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol, 2013, 34(4): 20412051. [12] Phromnoi K, Yodkeeree S, Anuchapreeda S, et al. Inhibition of MMP3 activity and invasion of the MDAMB231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol Sin, 2009, 30(8): 11691176. [13] Labbe D, Provencal M, Lamy S, et al. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factorinduced medulloblastoma cell migration. J Nutr, 2009, 139(4): 646652. [14] LópezLázaro M. A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med, 2010, 16(34): 144153. [15] Lee S, Kim YJ, Kwon S, et al. Inhibitory effects of flavonoids on TNFalphainduced IL8 gene expression in HEK 293 cells. BMB Rep, 2009, 42(5): 265270. [16] Seibert H, Maser E, Schweda K, et al. Cytoprotective activity against peroxideinduced oxidative damage and cytotoxicity of flavonoids in C6 rat glioma cells. Food Chem Toxicol, 2011, 49(9): 23982407. [17] Nirmala P, Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol, 2011, 654(1): 7579. [18] Mantovani A, Allavena P, Sica A, et al. Cancerrelated inflammation. Nature, 2008, 454(7203): 436444. [19] Qazi BS, Tang K, Qazi A. Recent advances in underlying pathologies provide insight into interleukin8 expressionmediated inflammation and angiogenesis. Int J Inflam, 2011, 2011: 908468. [20] Chen SS, Michael A, ButlerManuel SA. Advances in the treatment of ovarian cancer: a potential role of antiinflammatory phytochemicals. Discov Med, 2012, 13(68): 717. [21] Mukai R, Satsu H, Shimizu M, et al. Inhibition of Pglycoprotein enhances the suppressive effect of kaempferol on transformation of the aryl hydrocarbon receptor. Biosci Biotechnol Biochem, 2009, 73(7): 16351639. [22] Wang H, Gao M, Wang J. Kaempferol inhibits cancer cell growth by antagonizing estrogenrelated receptor alpha and gamma activities. Cell Biol Int, 2013, In press. [23] To KK, Yu L, Liu S, et al. Constitutive AhR activation leads to concomitant ABCG2mediated multidrug resistance in cisplatinresistant esophageal carcinoma cells. Mol Carcinog, 2012, 51(6): 449464. [24] Nakatsuma A, Fukami T, Suzuki T, et al. Effects of kaempferol on the mechanisms of drug resistance in the human glioblastoma cell line T98G. Pharmazie, 2010, 65(5): 379383. [25] Ahmed F, Toume K, Ohtsuki T, et al. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAILinduced apoptosis. Phytother Res, 2011, 25(1): 147150. [26] Geybels MS, Verhage BA, Arts IC, et al. Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am J Epidemiol, 2013, 177(12): 13881398. [27] Bobe G, Albert PS, Sansbury LB, et al. Interleukin6 as a potential indicator for prevention of highrisk adenoma recurrence by dietary flavonols in the polyp prevention trial. Cancer Prev Res (Phila), 2010, 3(6): 764775. [28] Gates MA, Vitonis AF, Tworoger SS, et al. Flavonoid intake and ovarian cancer risk in a populationbased casecontrol study. Int J Cancer, 2009, 124(8): 19181925. [29] Simons CC, Hughes LA, Arts IC, et al. Dietary flavonol, flavone and catechin intake and risk of colorectal cancer in the Netherlands Cohort Study. Int J Cancer, 2009, 125(12): 29452952. [30] Wang L, Lee IM, Zhang SM, et al. Dietary intake of selected flavonols, flavones, and flavonoidrich foods and risk of cancer in middleaged and older women. Am J Clin Nutr, 2009, 89(3): 905912. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||