Journal of International Oncology››2018,Vol. 45››Issue (10): 635-638.doi:10.3760/cma.j.issn.1673-422X.2018.10.013
Previous ArticlesNext Articles
Xia Dechun, Kang Xiaojing
Received:
2018-05-24Online:
2018-10-08Published:
2018-12-21Contact:
Kang Xiaojing E-mail:drkangxj666@163.comSupported by:
Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (2016D01C101)
Xia Dechun, Kang Xiaojing. Role and mechanism of Notch signaling pathway in melanoma growth and metastasis[J]. Journal of International Oncology, 2018, 45(10): 635-638.
[1] Liu J, FukunagaKalabis M, Li L, et al. Developmental pathways activated in melanocytes and melanoma[J]. Arch Biochem Biophys, 2014, 563: 13-21. DOI: 10.1016/j.abb.2014.07.023. [2] Yuan X, Wu H, Xu H, et al. Notch signaling: an emerging therapeutic target for cancer treatment[J]. Cancer Lett, 2015, 369(1): 20-27. DOI: 10.1016/j.canlet.2015.07.048. [3] Bedogni B. Notch signaling in melanoma: interacting pathways and stromal influences that enhance Notch targeting[J]. Pigment Cell Melanoma Res, 2014, 27(2): 162-168. DOI: 10.1111/pcmr.12194. [4] Zhang JX, Han YP, Bai C, et al. Notch1/3 and p53/p21 are a potential therapeutic target for APSinduced apoptosis in nonsmall cell lung carcinoma cell lines[J]. Int J Clin Exp Med, 2015, 8(8): 12539-12547. [5] Kang S, Xie J, Miao J, et al. A knockdown of Maml1 that results in melanoma cell senescence promotes an innate and adaptive immune response[J]. Cancer Immunol Immunother, 2013, 62(1): 183-190. DOI: 10.1007/s00262-012-1318-1. [6] Asnaghi L, Lin MH, Lim KS, et al. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation[J]. PLoS One, 2014, 9(8): e105372. DOI: 10.1371/journal.pone.0105372. [7] Zheng X, Narayanan S, Zheng X, et al. A Notchindependent mechanism contributes to the induction of Hes1 gene expression in response to hypoxia in P19 cells[J]. Exp Cell Res, 2017, 358(2): 129139. DOI: 10.1016/j.yexcr.2017.06.006. [8] Ishida T, Hijioka H, Kume K, et al. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment[J]. Oncol Lett, 2013, 6(5): 1201-1206. DOI: 10.3892/ol.2013.1549 [9] Moriyama H, Moriyama M, Isshi H, et al. Role of Notch signaling in the maintenance of human mesenchymal stem cellsunder hypoxic conditions[J]. Stem Cells Dev, 2014, 23(18): 2211-2224. DOI: 10.1089/scd.2013.0642. [10] Zhang K, Wong P, Duan J, et al. An ERBB3/ERBB2 oncogenic unit plays a key role in NRG1 signaling and melanoma cell growth and survival[J]. Pigment Cell Melanoma Res, 2013, 26(3): 408-414. DOI: 10.1111/pcmr.12089. [11] Zhang K, Wong P, Salvaggio C, et al. Synchronized targeting of Notch and ERBB signaling suppresses melanoma tumor growth through inhibition of Notch1 and ERBB3[J]. J Invest Dermatol, 2016, 136(2): 464472. DOI: 10.1016/j.jid.2015.11.006. [12] Krepler C, Xiao M, Samanta M, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAFV600E melanoma[J]. Oncotarget, 2016, 7(44): 71211-71222. DOI: 10.18632/oncotarget.12078. [13] Abel EV, Basile KJ, Kugel CH 3rd, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3mediated upregulation of ERBB3[J]. J Clin Invest, 2013, 123(5): 2155-2168. DOI: 10.1172/JCI65780. [14] Skarmoutsou E, Bevelacqua V, D′Amico F, et al. FOXP3 expression is modulated by TGF β1/NOTCH1 pathway in human melanoma[J]. Int J Mol Med, 2018, 42(1): 392-404. DOI: 10.3892/ijmm.2018.3618. [15] Murtas D, Piras F, Minerba L, et al. Activated Notch1 expression is associated with angiogenesis in cutaneous melanoma[J]. Clin Exp Med, 2014, 15(3): 351-360. DOI: 10.1007/s102380140300y. [16] Liu Y, Su C, Shan Y, et al. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition nuclear factorκB signaling[J]. Am J Transl Res, 2016, 8(6): 26812692. [17] Abbas OL, Borman H, Terzi YK, et al. The Notch pathway is a critical regulator of angiogenesis in a skin model of ischemia[J]. Vasc Med, 2015, 20(3): 205-211. DOI: 10.1177/1358863X15570723. [18] Ubezio B, Blanco RA, Geudens I, et al. Synchronization of endothelial Dll4Notch dynamics switch blood vessels from branching to expansion[J]. Elife, 2016, 5: pii: e12167. DOI: 10.7554/eLife.12167. [19] Pitulescu ME, Schmidt I, Giaimo BD, et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation[J]. Nat Cell Biol, 2017, 19(8): 915-927. DOI: 10.1038/ncb3555. [20] Murata A, Hayashi S. Notchmediated cell adhesion[J]. Biology (Basel), 2016, 5(1): pii: E5. DOI: 10.3390/biology5010005. [21] Zhang JP, Li N, Bai WZ, et al. Notch ligand Deltalike 1 promotes the metastasis of melanoma by enhancing tumor adhesion[J]. Braz J Med Biol Res, 2014, 47(4): 299-306. [22] Murtas D, Maxia C, Diana A, et al. Role of epithelialmesenchymal transition involved molecules in the progression of cutaneous melanoma[J]. Histochem Cell Biol, 2017, 148(6): 639649. DOI: 10.1007/s0041801716060. [23] Singh M, Yelle N, Venugopal C, et al. EMT: mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018, 182: 8094. DOI: 10.1016/j.pharmthera.2017.08.009. [24] Breier G, Grosser M, Rezaei M. Endothelial cadherins in cancer[J]. Cell Tissue Res, 2014, 355(3): 523-527. DOI: 10.1007/s00441-014-1851-7. [25] LadeKeller J, RiberHansen R, Guldberg P, et al. E to Ncadherin switch in melanoma is associated with decreased expression of phosphatase and tensin homolog and cancer progression[J]. Br J Dermatol, 2013, 169(3): 618-628. DOI: 10.1111/bjd.12426. [26] Wieland E, RodriguezVita J, Liebler SS, et al. Endothelial Notch1 activity facilitates metastasis[J]. Cancer Cell, 2017, 31(3): 355367. DOI: 10.1016/j.ccell.2017.01.007. [27] Pearlman RL, Montes de Oca MK, Pal HC, et al. Potential therapeutic targets of epithelialmesenchymal transition in melanoma[J]. Cancer Lett, 2017, 391: 125140. DOI: 10.1016/j.canlet.2017.01.029. [28] Yuan X, Wu H, Han N, et al. Notch signaling and EMT in nonsmall cell lung cancer: biological significance and therapeutic application[J]. J Hematol Oncol, 2014, 7: 87. DOI: 10.1186/s13045-014-0087-z. [29] Lin X, Sun B, Zhu D, et al. Notch4+ cancer stemlike cells promote the metastatic and invasive ability of melanoma[J]. Cancer Sci, 2016, 107(8): 1079-1091. DOI: 10.1111/cas.12978. [30] Golan T, Messer AR, AmitaiLange A, et al. Interactions of melanoma cells with distal keratinocytes krigger metastasis via Notch signaling inhibition of MITF[J]. Mol Cell, 2015, 59(4): 664-676. DOI: 10.1016/j.molcel.2015.06.028. |
[1] | Wang Ying, Liu Nan, Guo Bing.Advances of antibody-drug conjugate in the therapy of metastatic breast cancer[J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Kun, Zhou Zhongxin, Zang Qiwei.Predictive value of serum TGF-β1 and VEGF levels in patients with non-small cell lung cancer after single-port thoracoscopic radical resection[J]. Journal of International Oncology, 2024, 51(4): 198-203. |
[3] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing.Progress of radiotherapy in oligometastatic non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[4] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan.Research progress on the histopathological growth patterns of colorectal liver metastasis[J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[5] | Jiang Xi, Wu Yongcun, Liang Yan, Chu Li, Duan Yingxin, Wang Lijun, Huo Junjie.Impact of pembrolizumab combined with chemotherapy on angiogenesis and circulating endothelial cells in patients with advanced non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(2): 89-94. |
[6] | Huang Hui, Ding Jianghua.Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma[J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[7] | Pan Shulan, Liu Chang, He Ping.Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer[J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[8] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying.Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer[J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[9] | Wang Jun, Jia Xiuhong.TGF-β/Smad signal pathway and acute leukemia[J]. Journal of International Oncology, 2023, 50(8): 498-502. |
[10] | Wu Minhang, Sun Wenzheng, Yu Qingzhuo, Guo Rong, Ye Hui, Du Ying, Qiu Jin, An Huazhang, Cao Lili.RNF43 inhibits PD-L1 expressionviaβ-catenin in melanoma cells and promotes CD8+T cell-mediated anti-tumor immune reaction[J]. Journal of International Oncology, 2023, 50(7): 407-412. |
[11] | Yang Lirong, Wang Yufeng.Construction of machine learning models for predicting the risk of postoperative distant metastasis recurrence in serous ovarian cancer[J]. Journal of International Oncology, 2023, 50(4): 220-226. |
[12] | Ma Peihan, Zhang Lingming, Lu Ning, Zhang Mingxin.Effect of anesthesia on the recurrence and metastasis of hepatocellular carcinoma[J]. Journal of International Oncology, 2023, 50(2): 117-121. |
[13] | Ning Tingting, Hu Qinyong, Li Qian, Yang Pengcheng.Clinical efficacy of osimertinib and icotinib in first-line treatment of EGFR-positive metastatic NSCLC[J]. Journal of International Oncology, 2023, 50(2): 65-70. |
[14] | Zhang Bixia, Ding Jianghua.Immunotherapy for EGFR-mutant non-small cell lung cancer after EGFR-TKI acquired resistance[J]. Journal of International Oncology, 2023, 50(2): 97-101. |
[15] | Zhao Jianhao, Duan Yanchao.Research progress in the pathogenesis of extramedullary disease in multiple myeloma[J]. Journal of International Oncology, 2023, 50(1): 55-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||