Journal of International Oncology››2019,Vol. 46››Issue (5): 281-284.doi:10.3760/cma.j.issn.1673-422X.2019.05.006
Previous ArticlesNext Articles
Hu Mengxue1, Xu Bin1, Yu Jinming1,2, Song Qibin1
Received:
2019-02-27Online:
2019-05-08Published:
2019-06-14Contact:
Yu Jinming, Song Qibin E-mail:于金明,Email: sdyujinming@126.com;宋启斌,Email: qibinsong@163.comHu Mengxue, Xu Bin, Yu Jinming, Song Qibin. Advances of bifunctional anti-PD-L1/TGF-β fusion protein M7824[J]. Journal of International Oncology, 2019, 46(5): 281-284.
[1] Guo L, Zhang Y, Zhang L, et al. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer[J]. Tumour Biol, 2016, 37(1): 115-125. DOI: 10.1007/s13277-015-4374-2. [2] Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease[J]. Nat Rev Drug Discov, 2012, 11(10): 790-811. DOI: 10.1038/nrd3810. [3] Ravi R, Noonan KA, Pham V, et al. Bifunctional immune checkpointtargeted antibodyligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy[J]. Nat Commun, 2018, 9(1): 741. DOI: 10.1038/s41467-017-02696-6. [4] Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumourassociated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. DOI: 10.1038/nature22396. [5] Moustakas A, Heldin CH. Mechanisms of TGFβ-induced epithelialmesenchymal transition[J]. J Clin Med, 2016, 5(7). pii: E63. DOI: 10.3390/jcm5070063. [6] Bai WD, Ye XM, Zhang MY, et al. MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer[J]. Int J Cancer, 2014, 135(6): 1356-1368. DOI: 10.1002/ijc.28782. [7] Lin RL, Zhao LJ. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer[J]. Cancer Biol Med, 2015, 12(4): 385-393. DOI: 10.7497/j.issn.20953941.2015.0015. [8] Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. DOI: 10.1038/nature25501. [9] Duan J, Liu X, Chen H, et al. Impact of PDL1, transforming growth factorβ expression and tumor-infiltrating CD8+T cells on clinical outcome of patients with advanced thymic epithelial tumors[J]. Thorac Cancer, 2018, 9(11): 1341-1353. DOI: 10.1111/1759-7714.12826. [10] Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity[J]. Immunol Rev, 2010, 236: 219-242. DOI: 10.1111/j.1600-065x.2010.00923.x. [11] Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells[J]. J Exp Med, 2009, 206(13): 3015-3029. DOI: 10.1084/jem.20090847. [12] Morikawa M, Derynck R, Miyazono K. TGFβ and the TGFβ family: contextdependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5). pii: a021873. DOI: 10.1101/cshperspect.a021873. [13] Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β[J]. Sci Transl Med, 2018, 10(424). pii: eaan5488. DOI: 10.1126/scitranslmed.aan5488. [14] Knudson KM, Hicks KC, Luo X, et al. M7824, a novel bifunctional antiPD-L1/TGFβ Trap fusion protein, promotes antitumor efficacy as monotherapy and in combination with vaccine[J]. OncoImmunology, 2018, 7(5): e1426519. DOI: 10.1080/2162402X.2018.1426519. [15] Jochems C, Tritsch SR, Pellom ST, et al. Analyses of functions of an antiPD-L1/TGFβR2 bispecific fusion protein (M7824)[J]. Oncotarget, 2017, 8(43): 75217-75231. DOI: 10.18632/oncotarget.20680. [16] Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors[J]. Clin Cancer Res, 2018, 24(6): 1287-1295. DOI: 10.1158/1078-0432.CCR-17-2653. [17] Dovedi SJ, Adlard AL, LipowskaBhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade[J]. Cancer Res, 2014, 74(19): 5458-5468. DOI: 10.1158/0008-5472.CAN-14-1258. [18] Grenga I, Donahue RN, Gargulak ML, et al. AntiPDL1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immunemediated recognition and lysis[J]. Urol Oncol, 2018, 36(3): 93. e1-e93. e11. DOI: 10.1016/j.urolonc.2017.09.027. [19] David JM, Dominguez C, McCampbell KK, et al. A novel bifunctional antiPD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells[J]. Oncoimmunology, 2017, 6(10): e1349589. DOI: 10.1080/2162402X.2017.1349589. [20] Liu L, Liu X, Ren X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification[J]. Sci Rep, 2016, 6: 21602. DOI: 10.1038/srep21602. [21] Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as firstline treatment in cisplatinineligible patients with locally advanced and metastatic urothelial carcinoma: a singlearm, multicentre, phase 2 trial[J]. Lancet, 2017, 389(10064): 67-76. DOI: 10.1016/S0140-6736(16)32455-2. [22] Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinumtreated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, openlabel, phase 3 randomised controlled trial[J]. Lancet, 2018, 391(10122): 748-757. DOI: 10.1016/S0140-6736(17)33297-X. [23] Terabe M, Robertson FC, Clark K, et al. Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy[J]. Oncoimmunology, 2017, 6(5): e1308616. DOI: 10.1080/2162402X.2017.1308616. [24] Park BV, Freeman ZT, Ghasemzadeh A, et al. TGF-β1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer[J]. Cancer Discov, 2016, 6(12): 1366-1381. DOI: 10.1158/2159-8290.CD-15-1347. [25] Luis G, Tae K, David VB, et al. Results from a secondline (2L) NSCLC cohort treated with M7824 (MSB0011359C), a bifunctiona fusion protein targeting TGF-β and PD-L1[J]. J Clin Oncol, 2018, 36 (15_Suppl): 9017. DOI: 10.1200/JCO.2018.36.15_suppl.9017. [26] Julius S, Margaret GM, Jason R, et al. Safety and activity of M7824, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with HPV associated cancers[J]. J Clin Oncol, 2018, 36 (15_Suppl): 3007. DOI: 10.1200/JCO.2018.36.15_suppl.3007. [27] Yoo C, oh DY, Choi HJ, et al. AB053. P-21. M7824 (MSB0011359C), a bifunctional fusion protein targeting transforming growth factor β (TGF-β) and PD-L1, in Asian patients with pretreated biliary tract cancer (BTC): efficacy by BTC subtype[J]. ESMO, 2019, In press. DOI: 10.21037/hbsn.2019.AB053. |
[1] | Wang Yue, Hu Qun, Hou Yingwei.Research progress in influences of epigenetic modifications on PD-L1 expression in tumors[J]. Journal of International Oncology, 2022, 49(6): 345-348. |
[2] | Ning Tingting, Hu Qinyong.Research progress of metformin in tumor immunotherapy[J]. Journal of International Oncology, 2022, 49(5): 292-295. |
[3] | Ding Xinjing, Ding Jianghua.Research progress on the correlation between dermatological immune-related adverse events and clinical outcome of PD-1/PD-L1 inhibitors[J]. Journal of International Oncology, 2022, 49(4): 225-228. |
[4] | Xie Hongxia, Zuo Jinhui, Liao Dongying, Deng Renfen, Yao Yang, Jia Yingjie, Li Xiaojiang, Kong Fanming.Application of PD-L1 inhibitors in the treatment of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(2): 111-115. |
[5] | Ou Huiyi, Wang Yue, Peng Chenghong.Correlation between PD-L1 and Tregs in tumor immunity and immunotherapy[J]. Journal of International Oncology, 2021, 48(6): 350-353. |
[6] | Ding Yan, Wang Hongyan.Advances of PD-1/PD-L1 inhibitors in the treatment of esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2021, 48(2): 113-116. |
[7] | Zhao Lili, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhang Xue, Jing Wenjun, Wei Hongmei.Effects of silencing PD-L1 expression on biological behaviors of gastric cancer cells[J]. Journal of International Oncology, 2021, 48(12): 705-710. |
[8] | Cao Chun, He Wenqi, Yan Jun.Application of immune checkpoint inhibitors in the treatment of small cell lung cancer[J]. Journal of International Oncology, 2021, 48(12): 747-750. |
[9] | Xue Chen, Zhao Yue, Shi Guang, Tang Yan.Research progress of PD-1/PD-L1 inhibitors in ovarian cancer[J]. Journal of International Oncology, 2020, 47(5): 312-315. |
[10] | Xu Yangtao, Chen Biao, He Xiaoqin, Xu Ximing.Research progress of hyperprogressive disease after immunotherapy[J]. Journal of International Oncology, 2020, 47(12): 737-740. |
[11] | Song Bo, Wu Mingxin, Jia Yingjie, Li Xiaojiang.Research progress of immune-related pneumonia caused by PD-1/PD-L1 inhibitor[J]. Journal of International Oncology, 2020, 47(10): 627-629. |
[12] | Zhang Lizhuo, Qian Yangyang, Zheng Guowan, Ge Minghua.Mechanism study of PD-1/PD-L1 in tumor and its value of diagnosis and treatment of thyroid cancer[J]. Journal of International Oncology, 2020, 47(1): 39-42. |
[13] | Bai Xinya, Zhang jinmeng, Sun Yang, An Yongheng .Application of immune checkpoint inhibitors in the comprehensive treatment of advanced non-small cell lung cancer[J]. Journal of International Oncology, 2019, 46(8): 500-504. |
[14] | Hu Gengwei1, Zhang Ying2, Wu Zhihao3.Mechanism study and immunotherapy of immune checkpoint PD-1/PD-L1[J]. Journal of International Oncology, 2019, 46(2): 87-90. |
[15] | Qi Ruili, Wang Huaqing.Research progress of tumor vascular targeting drugs combined with PD-1/PD-L1 antibody in the treatment of digestive system tumors[J]. Journal of International Oncology, 2019, 46(12): 750-754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||