Journal of International Oncology››2024,Vol. 51››Issue (6): 376-381.doi:10.3760/cma.j.cn371439-20240429-00065
• Reviews •Previous ArticlesNext Articles
Gao Fan1, Wang Ping2, Du Chao2, Chu Yanliu2()
Received:
2024-04-29Revised:
2024-05-12Online:
2024-06-08Published:
2024-06-28Contact:
Chu Yanliu, Email:
Supported by:
Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381.
[1] | 周雄, 胡明, 李子帅, 等. 2020年全球及中国结直肠癌流行状况分析[J].海军军医大学学报,2022,43(12): 1356-1364. DOI:10.16781/j.CN31-2187/R.20220593. |
[2] | 陈海宁, 王自强, 于永扬, 等. 从全球趋势看我国结直肠癌防控:挑战与策略[J].中国科学(生命科学),2022,52(11): 1612-1625. |
[3] | 宋德心, 王伟东, 高瑞祺, 等. 肠道菌群在结直肠癌发生发展和诊断治疗中的作用研究进展[J].中国普通外科杂志,2022,31(4): 527-536. DOI:10.7659/j.issn.1005-6947.2022.04.015. |
[4] | Jiang SS, Xie YL, Xiao XY, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer[J].Cell Host Microbe,2023,31(5): 781-797.e9. DOI:10.1016/j.chom.2023.04.010. |
[5] | Wang ZK, Dan WY, Zhang NN, et al. Colorectal cancer and gut microbiota studies in China[J].Gut Microbes,2023,15(1): 2236364. DOI:10.1080/19490976.2023.2236364. |
[6] | Gao YH, Bi DX, Xie RT, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J].Signal Transduct Target Ther,2021,6(1): 398. DOI:10.1038/s41392-021-00795-x. |
[7] | Yu TC, Guo FF, Yu YN, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J].Cell,2017,170(3): 548-563.e16. DOI:10.1016/j.cell.2017.07.008. pmid:28753429 |
[8] | Zhang S, Yang YZ, Weng WH, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J].J Exp Clin Cancer Res,2019,38(1): 14. DOI:10.1186/s13046-018-0985-y. pmid:30630498 |
[9] | Dong JL, Li Y, Xiao HW, et al. Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models[J].Cell Rep,2021,37(4): 109886. DOI:10.1016/j.celrep.2021.109886. |
[10] | 吕志堂, 许晓娜, 张怡君. 脆弱拟杆菌在炎症性肠病、结直肠癌促进、调控及防治中的作用[J].微生物学杂志,2020,40(4): 1-8. DOI:10.3969/j.issn.1005-7021.2020.04.001. |
[11] | Boleij A, Hechenbleikner EM, Goodwin AC, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients[J].Clin Infect Dis,2015,60(2): 208-215. DOI:10.1093/cid/ciu787. pmid:25305284 |
[12] | Wu SG, Dreyfus LA, Tzianabos AO, et al. Diversity of the metalloprotease toxin produced by enterotoxigenic bacteroides fragilis[J].Infect Immun,2002,70(5): 2463-2471. DOI:10.1128/iai.70.5.2463-2471.2002. pmid:11953383 |
[13] | Xie XL, Jiang D, Zhou XB, et al. Recombinant bacteroides fragilis enterotoxin-1 (rBFT-1) promotes proliferation of colorectal cancer via CCL3-related molecular pathways[J].Open Life Sci,2021,16(1): 408-418. DOI:10.1515/biol-2021-0043. |
[14] | Lv Y, Ye T, Wang HP, et al. Suppression of colorectal tumorige-nesis by recombinant bacteroides fragilis enterotoxin-2 in vivo[J].World J Gastroenterol,2017,23(4): 603-613. DOI:10.3748/wjg.v23.i4.603. |
[15] | Sittipo P, Lobionda S, Choi K, et al. Toll-Like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide a from bacteroides fragilis[J].Front Microbiol,2018,9: 1588. DOI:10.3389/fmicb.2018.01588. pmid:30065713 |
[16] | Lee YK, Mehrabian P, Boyajian SL, et al. The protective role of bacteroides fragilis in a murine model of colitis-associated colorectal cancer[J].mSphere,2018,3(6): e00587-18. DOI:10.1128/mSphere.00587-18. |
[17] | Pandey H, Tang DWT, Wong SH, et al. Gut microbiota in colorectal cancer: biological role and therapeutic opportunities[J].Cancers (Basel),2023,15(3): 866. DOI:10.3390/cancers15030866. |
[18] | Spanogiannopoulos P, Kyaw TS, Guthrie BGH, et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism[J].Nat Microbiol,2022,7(10): 1605-1620. DOI:10.1038/s41564-022-01226-5. pmid:36138165 |
[19] | Lopès A, Billard E, Casse AH, et al. Colibactin-positive escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer[J].Int J Cancer,2020,146(11): 3147-3159. DOI:10.1002/ijc.32920. pmid:32037530 |
[20] | Gagnière J, Bonnin V, Jarrousse AS, et al. Interactions between microsatellite instability and human gut colonization by escherichia coli in colorectal cancer[J].Clin Sci (Lond),2017,131(6): 471-485. DOI:10.1042/cs20160876. pmid:28093453 |
[21] | Alizadeh S, Esmaeili A, Omidi Y. Anti-cancer properties of escherichia coli nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways[J].Iran J Basic Med Sci,2020,23(7): 886-893. DOI:10.22038/ijbms.2020.43016.10115. pmid:32774810 |
[22] | Chiang CJ, Hong YH. In situ delivery of biobutyrate by probiotic escherichia coli for cancer therapy[J].Sci Rep,2021,11(1): 18172. DOI:10.1038/s41598-021-97457-3. |
[23] | Yu XL, Lin CS, Yu J, et al. Bioengineered escherichia coli nissle 1917 for tumour-targeting therapy[J].Microb Biotechnol,2020,13(3): 629-636. DOI:10.1111/1751-7915.13523. pmid:31863567 |
[24] | Nougayrède JP, Chagneau CV, Motta JP, et al. A toxic friend: genotoxic and mutagenic activity of the probiotic strain escherichia coli nissle 1917[J].mSphere,2021,6(4): e0062421. DOI:10.1128/mSphere.00624-21. |
[25] | Kaiser P. Methionine dependence of cancer[J].Biomolecules,2020,10(4): 568. DOI:10.3390/biom10040568. |
[26] | Kubota Y, Han QH, Hamada K, et al. Oral installation of recombinant methioninase-producing escherichia coli into the microbiome inhibits colon-cancer growth in a syngeneic mouse model[J].Cancer Genomics Proteomics,2022,19(6): 683-691. DOI:10. 21873/cgp.20351. |
[27] | Zhou M, Yuan W, Yang B, et al. Clostridium butyricum inhibits the progression of colorectal cancer and alleviates intestinal inflammation via the myeloid differentiation factor 88(MyD88)-nuclear factor-kappa B(NF-κB)signaling pathway[J].Ann Transl Med,2022,10(8): 478. DOI:10.21037/atm-22-1670. |
[28] | He Y, Fu LH, Li YP, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+T cell immunity[J].Cell Metab,2021,33(5): 988-1000.e7. DOI:10.1016/j.cmet.2021.03.002. |
[29] | Nomura M, Nagatomo R, Doi K, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors[J].JAMA Netw Open, 2020, 3(4): e202895. DOI:10.1001/jamanetworkopen.2020.2895. |
[30] | Chen JZ, Zhao KN, Vitetta L. Effects of intestinal microbial- elaborated butyrate on oncogenic signaling pathways[J].Nutrients,2019,11(5): 1026. DOI:10.3390/nu11051026. |
[31] | Stoeva MK, Garcia-So J, Justice N, et al. Butyrate-producing human gut symbiont, clostridium butyricum, and its role in health and disease[J].Gut Microbes,2021,13(1): 1-28. DOI:10.1080/19490976.2021.1907272. |
[32] | Pu W, Zhang H, Zhang T, et al. Inhibitory effects of clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice[J].Front Immunol,2023: 1004756. DOI:10.3389/fimmu.2023.1004756. |
[33] | Chen DF, Jin DC, Huang SM, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating wnt signaling and gut microbiota[J].Cancer Lett,2020,469: 456-467. DOI:10.1016/j.canlet.2019.11.019. pmid:31734354 |
[34] | Hradicka P, Beal J, Kassayova M, et al. A novel lactic acid bacteria mixture: macrophage-targeted prophylactic intervention in colorectal cancer management[J].Microorganisms,2020,8(3): 387. DOI:10.3390/microorganisms8030387. |
[35] | An JJ, Ha EM. Combination therapy of lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells[J].J Microbiol Biotechnol,2016,26(8): 1490-1503. DOI:10.4014/jmb.1605.05024. |
[36] | An JJ, Ha EM. Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression[J].J Microbiol,2020,58(11): 967-977. DOI:10.1007/s12275-020-0375-y. pmid:33125671 |
[37] | An JJ, Ha EM. Extracellular vesicles derived from lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells[J].J Microbiol,2022,60(7): 735-745. DOI:10.1007/s12275-022-2201-1. pmid:35781627 |
[38] | An JJ, Seok H, Ha EM. GABA-producing lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABAB receptor signaling[J].J Microbiol,2021,59(2): 202-216. DOI:10.1007/s12275-021-0562-5. |
[39] | Kim HJ, An JJ, Ha EM. Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regula-ting the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells[J].J Microbiol,2022,60(1): 100-117. DOI:10.1007/s12275-022-1533-1. |
[40] | Zhang QQ, Zhao Q, Li T, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+T cell immunity[J].Cell Metab,2023,35(6): 943-960.e9. DOI:10.1016/j.cmet.2023.04.015. |
[41] | Amin M, Navidifar T, Saeb S, et al. Tumor-targeted induction of intrinsic apoptosis in colon cancer cells by lactobacillus plantarum and lactobacillus rhamnosus strains[J].Mol Biol Rep,2023,50(6): 5345-5354. DOI:10.1007/s11033-023-08445-x. pmid:37155013 |
[42] | Si W, Liang H, Bugno J, et al. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type Ⅰ interferon and improves response to immune checkpoint blockade[J].Gut,2022,71(3): 521-533. DOI:10.1136/gutjnl-2020-323426. |
[43] | Owens JA, Saeedi BJ, Naudin CR, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response[J].Cell Mol Gastroenterol Hepatol,2021,12(4): 1311-1327. DOI:10.1016/j.jcmgh.2021.06.001. |
[44] | Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study[J].Br J Cancer,2007,97(8): 1028-1034. DOI:10.1038/sj.bjc.6603990. |
[45] | Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment[J].Gut Microbes,2023,15(1): 2185028. DOI:10.1080/19490976.2023.2185028. |
[46] | Li Q, Hu W, Liu WX, et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase[J].Gastroenterology,2021,160(4): 1179-1193.e14. DOI:10.1053/j.gastro.2020.09.003. pmid:32920015 |
[47] | Yenuganti VR, Yadala R, Azad R, et al. In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line[J].J Appl Microbiol,2021,131(4): 1958-1969. DOI:10.1111/jam.15060. pmid:33694215 |
[48] | Wang YH, Yao N, Wei KK, et al. The efficacy and safety of probiotics for prevention of chemoradiotherapy-induced diarrhea in people with abdominal and pelvic cancer: a systematic review and meta-analysis[J].Eur J Clin Nutr,2016,70(11): 1246-1253. DOI:10.1038/ejcn.2016.102. pmid:27329608 |
[49] | Liu MM, Li ST, Shu Y, et al. Probiotics for prevention of radiation-induced diarrhea: a meta-analysis of randomized controlled trials[J].PLoS One,2017,12(6): e0178870. DOI:10.1371/journal.pone.0178870. |
[50] | Guo YX, Chen Y, Liu XQ, et al. Targeted cancer immunotherapy with genetically engineered oncolytic salmonella typhimurium[J].Cancer Lett,2020,469: 102-110. DOI:10.1016/j.canlet.2019.10.033. pmid:31666180 |
[51] | Lee CH. Employment of salmonella in cancer gene therapy[J].Methods Mol Biol,2016,1409: 79-83. DOI:10.1007/978-1-4939-3515-4_8. |
[52] | Liu L, Zhang J, Gu M, et al. Antitumor effect of cycle inhibiting factor expression in colon cancer via salmonella VNP20009[J].Anticancer Agents Med Chem,2020,20(14): 1722-1727. DOI:10.2174/1871520620666200423080622. |
[53] | Liu ZC, Li X, Lu ZK, et al. Repurposing the pentameric B-subunit of shiga toxin for Gb3-targeted immunotherapy of colorectal cancer by rhamnose conjugation[J].J Pharm Sci,2022,111(10): 2719-2729. DOI:10.1016/j.xphs.2022.07.017. |
[54] | Aguiar SLF, Miranda MCG, Guimarães MAF, et al. High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice[J].Front Immunol,2018,8: 1969. DOI:10.3389/fimmu.2017.01969. |
[55] | Housseau F, Wu SG, Wick EC, et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis[J].Cancer Res,2016,76(8): 2115-2124. DOI:10.1158/0008-5472.Can-15-0749. pmid:26880802 |
[56] | Hwang S, Yi HC, Hwang S, et al. Dietary salt administration decreases enterotoxigenic bacteroides fragilis (ETBF)-promoted tumorigenesis via inhibition of colonic inflammation[J].Int J Mol Sci,2020,21(21): 8034. DOI:10.3390/ijms21218034. |
[57] | Li S, Liu JY, Zheng XJ, et al. Tumorigenic bacteria in colorectal cancer: mechanisms and treatments[J].Cancer Biol Med,2021,19(2): 147-162. DOI:10.20892/j.issn.2095-3941.2020.0651. |
[58] | Blaser MJ. Antibiotic use and its consequences for the normal microbiome[J].Science,2016,352(6285): 544-545. DOI:10.1126/science.aad9358. pmid:27126037 |
[59] | Boursi B, Haynes K, Mamtani R, et al. Impact of antibiotic exposure on the risk of colorectal cancer[J].Pharmacoepidemiol Drug Saf,2015,24(5): 534-542. DOI:10.1002/pds.3765. pmid:25808540 |
[60] | Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J].Science,2018,359(6371): 91-97. DOI:10.1126/science.aan3706. pmid:29097494 |
[61] | Huang JY, Zheng X, Kang WY, et al. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer[J].Front Immunol,2022,13: 874922. DOI:10.3389/fimmu.2022.874922. |
[62] | DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli Bacteremia transmitted by fecal microbiota transplant[J].N Engl J Med,2019,381(21): 2043-2050. DOI:10.1056/NEJMoa1910437. |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei.Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study[J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun.Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer[J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Xu Fenglin, Wu Gang.Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma[J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[4] | Zhang Rui, Chu Yanliu.Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua.Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy[J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao.Effect of cancer nodules on liver metastases after radical resection of colorectal cancer[J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[7] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong.Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[8] | Sa Qiang, Xu Hangcheng, Wang Jiayu.Advances in immunotherapy for breast cancer[J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao.Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes[J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Qian Xiaotao, Shi Ziyi, Hu Ge.A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[11] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing.Progress of radiotherapy in oligometastatic non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan.Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer[J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Yue Hongyun, Zhang Baihong.Differentiation therapies in human cancers[J]. Journal of International Oncology, 2024, 51(2): 109-113. |
[14] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan.Research progress on the histopathological growth patterns of colorectal liver metastasis[J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[15] | Jin Xudong, Chen Zhongjian, Mao Weimin.Research progress on the role of MTAP in malignant mesothelioma[J]. Journal of International Oncology, 2024, 51(2): 99-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||