国际肿瘤学杂志››2021,Vol. 48››Issue (1): 41-44.doi:10.3760/cma.j.cn371439-20200810-00007
收稿日期:
2020-08-10修回日期:
2020-10-29出版日期:
2021-01-08发布日期:
2021-01-21通讯作者:
李子坚 E-mail:lddy_lizj@lzu.edu.cn基金资助:
Received:
2020-08-10Revised:
2020-10-29Online:
2021-01-08Published:
2021-01-21Contact:
Li Zijian E-mail:lddy_lizj@lzu.edu.cnSupported by:
摘要:
姐妹染色单体凝聚发生于DNA复制时期,由黏合素调节,并且依赖于细胞分裂周期相关蛋白5(CDCA5)及黏合素的乙酰化。WAPL可以促进黏合素与DNA解离,CDCA5可以拮抗WAPL的作用,通过稳定黏合素与DNA的结合从而稳定姐妹染色单体凝聚。CDCA5 mRNA在多种肿瘤细胞株中具有较高的转录水平,提示CDCA5可能与肿瘤细胞较高的恶性增殖活性有关,并且已经在肝癌、肺癌等多种肿瘤中得到证实,CDCA5可能是肿瘤治疗的潜在靶向分子。
何佩东, 李子坚. CDCA5与肿瘤[J]. 国际肿瘤学杂志, 2021, 48(1): 41-44.
He Peidong, Li Zijian. CDCA5 and tumors[J]. Journal of International Oncology, 2021, 48(1): 41-44.
[1] | Chang IW, Lin VC, He HL, et al. CDCA5 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder[J]. Am J Transl Res, 2015,7(4):710-722. pmid:26064439 |
[2] | Fu G, Xu Z, Chen X, et al. CDCA5 functions as a tumor promoter in bladder cancer by dysregulating mitochondria-mediated apoptosis, cell cycle regulation and PI3k/AKT/mTOR pathway activation[J]. J Cancer, 2020,11(9):2408-2420. DOI: 10.7150/jca.35372. pmid:32201512 |
[3] | Cai C, Wang W, Tu Z. Aberrantly DNA methylated-differentially expressed genes and pathways in hepatocellular carcinoma[J]. J Cancer, 2019,10(2):355-366. DOI: 10.7150/jca.27832. pmid:30719129 |
[4] | Wan Z, Zhang X, Luo Y, et al. Identification of hepatocellular carcinoma-related potential genes and pathways through bioinformatic-based analyses[J]. Genet Test Mol Biomarkers, 2019,23(11):766-777. DOI: 10.1089/gtmb.2019.0063. pmid:31633428 |
[5] | Chen H, Chen J, Zhao L, et al. CDCA5, transcribed by E2F1, promotes oncogenesis by enhancing cell proliferation and inhibiting apoptosis via the AKT pathway in hepatocellular carcinoma[J]. J Cancer, 2019,10(8):1846-1854. DOI: 10.7150/jca.28809. doi:10.7150/jca.28809pmid:31205541 |
[6] | Tian Y, Wu J, Chagas C, et al. CDCA5 overexpression is an Indicator of poor prognosis in patients with hepatocellular carcinoma (HCC)[J]. BMC Cancer, 2018,18(1):1187. DOI: 10.1186/s12885-018-5072-4. doi:10.1186/s12885-018-5072-4pmid:30497429 |
[7] | Wang J, Xia C, Pu M, et al. Silencing of CDCA5 inhibits cancer progression and serves as a prognostic biomarker for hepatocellular carcinoma[J]. Oncol Rep, 2018,40(4):1875-1884. DOI: 10.3892/or.2018.6579. doi:10.3892/or.2018.6579pmid:30015982 |
[8] | Shen Z, Yu X, Zheng Y, et al. CDCA5 regulates proliferation in hepatocellular carcinoma and has potential as a negative prognostic marker[J]. Onco Targets Ther, 2018,11:891-901. DOI: 10.2147/OTT.S154754. pmid:29503564 |
[9] | Lin Y, Liang R, Ye J, et al. A twenty gene-based gene set variation score reflects the pathological progression from cirrhosis to hepatocellular carcinoma[J]. Aging (Albany NY), 2019,11(23):11157-11169. DOI: 10.18632/aging.102518. |
[10] | Zhang Z, Shen M, Zhou G. Upregulation of CDCA5 promotes gastric cancer malignant progression via influencing cyclin E1[J]. Biochem Biophys Res Commun, 2018,496(2):482-489. DOI: 10.1016/j.bbrc.2018.01.046. pmid:29326043 |
[11] | Chen T, Huang Z, Tian Y, et al. Role of triosephosphate isomerase and downstream functional genes on gastric cancer[J]. Oncol Rep, 2017,38(3):1822-1832. DOI: 10.3892/or.2017.5846. doi:10.3892/or.2017.5846pmid:28737830 |
[12] | Nguyen MH, Koinuma J, Ueda K, et al. Phosphorylation and activation of cell division cycle associated 5 by mitogen-activated protein kinase play a crucial role in human lung carcinogenesis[J]. Cancer Res, 2010,70(13):5337-5347. DOI: 10.1158/0008-5472.can-09-4372. pmid:20551060 |
[13] | Wu Q, Zhang B, Sun Y, et al. Identification of novel biomarkers and candidate small molecule drugs in non-small-cell lung cancer by integrated microarray analysis[J]. Onco Targets Ther, 2019,12:3545-3563. DOI: 10.2147/ott.s198621. doi:10.2147/OTT.S198621pmid:31190860 |
[14] | Huang J, Li Y, Lu Z, et al. Analysis of functional hub genes identifies CDC45 as an oncogene in non-small cell lung cancer-a short report[J]. Cell Oncol (Dordr), 2019,42(4):571-578. DOI: 10.1007/s13402-019-00438-y. |
[15] | Ladurner R, Kreidl E, Ivanov MP, et al. Sororin actively maintains sister chromatid cohesion[J]. EMBO J, 2016,35(6):635-653. DOI: 10.15252/embj.201592532. pmid:26903600 |
[16] | Zhang N, Pati D. C-terminus of Sororin interacts with SA2 and regulates sister chromatid cohesion[J]. Cell Cycle, 2015,14(6):820-826. DOI: 10.1080/15384101.2014.1000206. pmid:25608232 |
[17] | Nishiyama T, Ladurner R, Schmitz J, et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl[J]. Cell, 2010,143(5):737-749. DOI: 10.1016/j.cell.2010.10.031. doi:10.1016/j.cell.2010.10.031pmid:21111234 |
[18] | Nishiyama T, Sykora MM, Huis in't Veld PJ, et al. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin[J]. Proc Natl Acad Sci U S A, 2013,110(33):13404-13409. DOI: 10.1073/pnas.1305020110. doi:10.1073/pnas.1305020110pmid:23901111 |
[19] | Borton MT, Rashid MS, Dreier MR, et al. Multiple levels of regulation of sororin by Cdk1 and Aurora B[J]. J Cell Biochem, 2016,117(2):351-360. DOI: 10.1002/jcb.25277. doi:10.1002/jcb.25277pmid:26177583 |
[20] | Zhang N, Pati D. Sororin is a master regulator of sister chromatid cohesion and separation[J]. Cell Cycle, 2012,11(11):2073-2083. DOI: 10.4161/cc.20241. doi:10.4161/cc.20241pmid:22580470 |
[21] | Liu J, Meng H, Li S, et al. Identification of potential biomarkers in association with progression and prognosis in epithelial ovarian cancer by integrated bioinformatics analysis[J]. Front Genet, 2019,10:1031. DOI: 10.3389/fgene.2019.01031. pmid:31708970 |
[22] | Shen A, Liu L, Chen H, et al. Cell division cycle associated 5 promotes colorectal cancer progression by activating the ERK signaling pathway[J]. Oncogenesis, 2019,8(3):19. DOI: 10.1038/s41389-019-0123-5. pmid:30808873 |
[23] | Xu J, Zhu C, Yu Y, et al. Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma[J]. EBioMedicine, 2019,46:54-65. DOI: 10.1016/j.ebiom.2019.07.030. doi:10.1016/j.ebiom.2019.07.030pmid:31324603 |
[24] | Zhou Q, Ren J, Hou J, et al. Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer[J]. J Cancer Res Clin Oncol, 2019,145(9):2383-2396. DOI: 10.1007/s00432-019-02974-4. doi:10.1007/s00432-019-02974-4pmid:31280346 |
[25] | Fu Y, Zhou QZ, Zhang XL, et al. Identification of hub genes using co-expression network analysis in breast cancer as a tool to predict different stages[J]. Med Sci Monit, 2019,25:8873-8890. DOI: 10.12659/msm.919046. doi:10.12659/MSM.919046pmid:31758680 |
[26] | Phan NN, Wang CY, Li KL, et al. Distinct expression of CDCA3, CDCA5, and CDCA8 leads to shorter relapse free survival in breast cancer patient[J]. Oncotarget, 2018,9(6):6977-6992. DOI: 10.18632/oncotarget.24059. pmid:29467944 |
[27] | Kato T, Lee D, Wu L, et al. SORORIN and PLK1 as potential the-rapeutic targets in malignant pleural mesothelioma[J]. Int J Oncol, 2016,49(6):2411-2420. DOI: 10.3892/ijo.2016.3765. pmid:27840913 |
[28] | Tokuzen N, Nakashiro K, Tanaka H, et al. Therapeutic potential of targeting cell division cycle associated 5 for oral squamous cell carcinoma[J]. Oncotarget, 2016,7(3):2343-2353. DOI: 10.18632/oncotarget.6148. doi:10.18632/oncotarget.6148pmid:26497678 |
[29] | Xu T, Ma M, Dai J, et al. Gene expression screening identifies CDCA5 as a potential therapeutic target in acral melanoma[J]. Hum Pathol, 2018,75:137-145. DOI: 10.1016/j.humpath.2018.02.009. pmid:29452217 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||