国际肿瘤学杂志››2022,Vol. 49››Issue (8): 449-452.doi:10.3760/cma.j.cn371439-20220303-00087
• 一切为了人民健康——我们这十年 •下一篇
收稿日期:
2022-03-03修回日期:
2022-03-20出版日期:
2022-08-08发布日期:
2022-09-21通讯作者:
刘加成 E-mail:jiachengliu@seu.eduReceived:
2022-03-03Revised:
2022-03-20Online:
2022-08-08Published:
2022-09-21Contact:
Liu Jiacheng E-mail:jiachengliu@seu.edu摘要:
表现为磨玻璃结节(GGN)的早期肺腺癌检出率不断升高,在精准靶向治疗发展的时代背景下,更需要基于多模态的影像组学(RM)及影像基因组学等非侵入性检查,以辅助诊断、治疗方案制定及随访,减轻临床负担。RM可分析GGN样肺腺癌不同成分、分析瘤周区域、辅助减少过度诊疗、帮助靶向治疗选择及辅助随访,在孤立性GGN样肺腺癌的诊疗中将发挥越来越重要的作用。
吴嘉钰, 刘加成. 孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452.
Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule[J]. Journal of International Oncology, 2022, 49(8): 449-452.
[1] | Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies[J]. Cancer Treat Rev, 2021, 99: 102237. DOI: 10.1016/j.ctrv.2021.102237. doi:10.1016/j.ctrv.2021.102237 |
[2] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. doi:10.3322/caac.21660 |
[3] | Xiong Z, Jiang Y, Che S, et al. Use of CT radiomics to differentiate minimally invasive adenocarcinomas and invasive adenocarcinomas presenting as pure ground-glass nodules larger than 10 mm[J]. Eur J Radiol, 2021, 141: 109772. DOI: 10.1016/j.ejrad.2021.109772. doi:10.1016/j.ejrad.2021.109772 |
[4] | Shao X, Niu R, Shao X, et al. Value of18F-FDG PET/CT-based radiomics model to distinguish the growth patterns of early invasive lung adenocarcinoma manifesting as ground-glass opacity nodules[J]. EJNMMI Res, 2020, 10(1): 80. DOI: 10.1186/s13550-020-00668-4. doi:10.1186/s13550-020-00668-4 |
[5] | Gao C, Yan J, Luo Y, et al. The growth trend predictions in pulmonary ground glass nodules based on radiomic CT features[J]. Front Oncol, 2020, 10: 580809. DOI: 10.3389/fonc.2020.580809. doi:10.3389/fonc.2020.580809 |
[6] | Niu R, Gao J, Shao X, et al. Maximum standardized uptake value of18F-deoxyglucose PET imaging increases the effectiveness of CT radiomics in differentiating benign and malignant pulmonary ground-glass nodules[J]. Front Oncol, 2021, 11: 727094. DOI: 10.3389/fonc.2021.727094. doi:10.3389/fonc.2021.727094 |
[7] | Heidinger BH, Anderson KR, Nemec U, et al. Lung adenocarcinoma manifesting as pure ground-glass nodules: correlating CT size, volume, density, and roundness with histopathologic invasion and size[J]. J Thorac Oncol, 2017, 12(8): 1288-1298. DOI: 10.1016/j.jtho.2017.05.017. doi:S1556-0864(17)30425-2pmid:28576745 |
[8] | Azour L, Ko JP, Naidich DP, et al. Shades of gray: subsolid nodule considerations and management[J]. Chest, 2021, 159(5): 2072-2089. DOI: 10.1016/j.chest.2020.09.252. doi:10.1016/j.chest.2020.09.252 |
[9] | Wang HJ, Lin MW, Chen YC, et al. A radiomics model can distinguish solitary pulmonary capillary haemangioma from lung adenocarcinoma[J]. Interact Cardiovasc Thorac Surg, 2022, 34(3): 369-377. DOI: 10.1093/icvts/ivab271. doi:10.1093/icvts/ivab271 |
[10] | Sun Y, Li C, Jin L, et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction[J]. Eur Radiol, 2020, 30(7): 3650-3659. DOI: 10.1007/s00330-020-06776-y. doi:10.1007/s00330-020-06776-y |
[11] | Wu L, Gao C, Ye J, et al. The value of various peritumoral radiomic features in differentiating the invasiveness of adenocarci-noma manifesting as ground-glass nodules[J]. Eur Radiol, 2021, 31(12): 9030-9037. DOI: 10.1007/s00330-021-07948-0. doi:10.1007/s00330-021-07948-0 |
[12] | Meng F, Guo Y, Li M, et al. Radiomics nomogram: a noninvasive tool for preoperative evaluation of the invasiveness of pulmonary adenocarcinomas manifesting as ground-glass nodules[J]. Transl Oncol, 2021, 14(1): 100936. DOI: 10.1016/j.tranon.2020.100936. doi:10.1016/j.tranon.2020.100936 |
[13] | Wu G, Woodruff HC, Shen J, et al. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study[J]. Radiology, 2020, 297(2): 451-458. DOI: 10.1148/radiol.2020192431. doi:10.1148/radiol.2020192431 |
[14] | Cai J, Liu H, Yuan H, et al. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules[J]. Clin Radiol, 2021, 76(2): 143-151. DOI: 10.1016/j.crad.2020.10.005. doi:10.1016/j.crad.2020.10.005pmid:33187676 |
[15] | Yang X, Dong X, Wang J, et al. Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule[J]. Oncologist, 2019, 24(11): e1156-e1164. DOI: 10.1634/theoncologist.2018-0706. doi:10.1634/theoncologist.2018-0706 |
[16] | Shi L, Shi W, Peng X, et al. Development and validation a nomogram incorporating CT radiomics signatures and radiological features for differentiating invasive adenocarcinoma from adenocarcinoma in situ and minimally invasive adenocarcinoma presenting as ground-glass nodules measuring 5-10mm in diameter[J]. Front Oncol, 2021, 11: 618677. DOI: 10.3389/fonc.2021.618677. doi:10.3389/fonc.2021.618677 |
[17] | Ma Y, Ma W, Xu X, et al. How does the delta-radiomics better differentiate pre-invasive GGNs from invasive GGNs?[J]. Front Oncol, 2020, 10: 1017. DOI: 10.3389/fonc.2020.01017. doi:10.3389/fonc.2020.01017 |
[18] | Song L, Xing T, Zhu Z, et al. Hybrid clinical-radiomics model for precisely predicting the invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodule[J]. Acad Radiol, 2021, 28(9): e267-e277. DOI: 10.1016/j.acra.2020.05.004. doi:10.1016/j.acra.2020.05.004 |
[19] | Wang B, Tang Y, Chen Y, et al. Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules[J]. Lung Cancer, 2020, 139: 103-110. DOI: 10.1016/j.lungcan.2019.10.031. doi:S0169-5002(19)30712-3pmid:31760351 |
[20] | Yan J, Xue X, Gao C, et al. Predicting the Ki-67 proliferation index in pulmonary adenocarcinoma patients presenting with subsolid nodules: construction of a nomogram based on CT images[J]. Quant Imaging Med Surg, 2022, 12(1): 642-652. DOI: 10.21037/qims-20-1385. doi:10.21037/qims-20-1385 |
[21] | Li Y, Liu J, Yang X, et al. Prediction of invasive adenocarcinomas manifesting as pure ground-glass nodules based on radiomic signature of low-dose CT in lung cancer screening[J]. Br J Radiol, 2022, 95(1133): 20211048. DOI: 10.1259/bjr.20211048. doi:10.1259/bjr.20211048 |
[22] | Jiang Y, Che S, Ma S, et al. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact[J]. Cancer Imaging, 2021, 21(1): 1. DOI: 10.1186/s40644-020-00376-1. doi:10.1186/s40644-020-00376-1 |
[23] | Xu F, Zhu W, Shen Y, et al. Radiomic-based quantitative CT analysis of pure ground-glass nodules to predict the invasiveness of lung adenocarcinoma[J]. Front Oncol, 2020, 10: 872. DOI: 10.3389/fonc.2020.00872. doi:10.3389/fonc.2020.00872 |
[24] | Chen W, Li M, Mao D, et al. Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifes-ting as subcentimeter ground glass nodules[J]. Sci Rep, 2021, 11(1): 3633. DOI: 10.1038/s41598-021-83167-3. doi:10.1038/s41598-021-83167-3 |
[25] | Cho HH, Lee G, Lee HY, et al. Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(5): 2984-2994. DOI: 10.1007/s00330-019-06581-2. doi:10.1007/s00330-019-06581-2 |
[26] | Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogeno-mics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7: 41674. DOI: 10.1038/srep41674. doi:10.1038/srep41674 |
[27] | 杨蕾, 张传玉, 张在先, 等. 非小细胞肺癌影像基因组学[J]. 国际肿瘤学杂志, 2020, 47(9): 555-559. DOI: 10.3760/cma.j.cn371439-20200423-00077. doi:10.3760/cma.j.cn371439-20200423-00077 |
[28] | Jansen RW, van Amstel P, Martens RM, et al. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis[J]. Oncotarget, 2018, 9(28): 20134-20155. DOI: 10.18632/oncotarget.24893. doi:10.18632/oncotarget.24893pmid:29732009 |
[1] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[3] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰.髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[4] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[5] | 许萌, 姜伟, 朱海涛, 曹雄锋.癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[6] | 丁浩, 应劲涛, 付茂勇.CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
[7] | 曹梦清, 徐志勇, 施毓婷, 王凯.三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. |
[8] | 徐良富, 李袁飞.MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[9] | 曹晓辉, 于荭, 李万湖.基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111. |
[10] | 朱易, 陈健.硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733. |
[11] | 谢露露, 丁江华.免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. |
[12] | 陶红, 殷红, 罗宏, 陶佳瑜.靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[13] | 马雪艳, 鲁历历, 孙鹏飞.免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[14] | 张子叔, 乌新林.肿瘤微环境中乳酸的作用机制及相关治疗[J]. 国际肿瘤学杂志, 2022, 49(6): 349-352. |
[15] | 吴家宜, 陈柯羽, 邵喜英, 王晓稼.CDK4/6抑制剂通过调控三阴性乳腺癌免疫微环境促进抗肿瘤免疫的机制研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 362-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||