国际肿瘤学杂志››2023,Vol. 50››Issue (2): 107-111.doi:10.3760/cma.j.cn371439-20220726-00022
收稿日期:
2022-07-26修回日期:
2022-09-20出版日期:
2023-02-08发布日期:
2023-03-22通讯作者:
李万湖,Email:
基金资助:
Cao Xiaohui1, Yu Hong2, Li Wanhu3()
Received:
2022-07-26Revised:
2022-09-20Online:
2023-02-08Published:
2023-03-22Contact:
Li Wanhu,Email:
Supported by:
摘要:
影像组学作为一种非侵入性的图像分析方法,能够深度发掘隐藏在医学影像背后的临床信息,近几年在医学上得到了广泛应用。同期放化疗后巩固免疫治疗已经成为局部晚期非小细胞肺癌的标准治疗方案,治疗相关不良反应放射性肺炎(RP)和免疫检查点抑制剂相关性肺炎(CIP)的预测和鉴别对于治疗方案的制定及后续治疗方案的选择至关重要。基于CT的影像组学分析在预测RP和CIP以及二者鉴别方面展现了巨大潜力。
曹晓辉, 于荭, 李万湖. 基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111.
Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis[J]. Journal of International Oncology, 2023, 50(2): 107-111.
[1] | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extrac-ting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036. doi:10.1016/j.ejca.2011.11.036 |
[2] | Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552. doi:10.3322/caac.21552 |
[3] | Arifin AJ, Palma DA. The changing landscape of pneumonitis in non-small cell lung cancer[J]. Lung Cancer, 2022, 171: 1-2. DOI: 10.1016/j.lungcan.2022.07.008. doi:10.1016/j.lungcan.2022.07.008pmid:35849898 |
[4] | 符伶俐, 李萍, 张芮, 等. 胸部肿瘤患者辐射性肺炎的发生和预测因素[J]. 国际肿瘤学杂志, 2020, 47(2): 107-111. DOI: 10.3760/cma.j.issn.1673-422X.2020.02.009. doi:10.3760/cma.j.issn.1673-422X.2020.02.009 |
[5] | Katsuta Y, Kadoya N, Sugai Y, et al. Feasibility of differential dose-volume histogram features in multivariate prediction model for radiation pneumonitis occurrence[J]. Diagnostics (Basel), 2022, 12(6): 1354. DOI: 10.3390/diagnostics12061354. doi:10.3390/diagnostics12061354 |
[6] | 路玉昆, 巩贯忠, 陈进琥, 等. CT图像影像组学特征参数变化与放射性肺炎的相关性研究[J]. 中华放射肿瘤学杂志, 2018, 27(7): 643-648. DOI: 10.3760/cma.j.issn.1004-4221.2018.07.004. doi:10.3760/cma.j.issn.1004-4221.2018.07.004 |
[7] | Kawahara D, Imano N, Nishioka R, et al. Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis[J]. Sci Rep, 2021, 11(1): 16232. DOI: 10.1038/s41598-021-95643-x. doi:10.1038/s41598-021-95643-xpmid:34376721 |
[8] | 张臻, 赵路军, 王伟, 等. 基于放射组学预测放射性肺炎的初步研究[J]. 中华放射肿瘤学杂志, 2020, 29(6): 427-431. DOI: 10.3760/cma.j.cn113030-20190225-00063. doi:10.3760/cma.j.cn113030-20190225-00063 |
[9] | Krafft SP, Rao A, Stingo F, et al. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis[J]. Med Phys, 2018, 45(11): 5317-5324. DOI: 10.1002/mp.13150. doi:10.1002/mp.13150pmid:30133809 |
[10] | 孔燕, 吴佳, 魏贤顶, 等. 肺癌放疗患者症状性放射性肺炎预测的CT影像组学研究[J]. 中华放射医学与防护杂志, 2022, 42(2): 115-120. DOI: 10.3760/cma.j.cn112271-20210730-00301. doi:10.3760/cma.j.cn112271-20210730-00301 |
[11] | Jiang W, Song Y, Sun Z, et al. Dosimetric factors and radiomics features within different regions of interest in planning CT images for improving the prediction of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2021, 110(4): 1161-1170. DOI: 10.1016/j.ijrobp.2021.01.049. doi:10.1016/j.ijrobp.2021.01.049 |
[12] | Puttanawarut C, Sirirutbunkajorn N, Tawong N, et al. Radiomic and dosiomic features for the prediction of radiation pneumonitis across esophageal cancer and lung cancer[J]. Front Oncol, 2022, 12: 768152. DOI: 10.3389/fonc.2022.768152. doi:10.3389/fonc.2022.768152 |
[13] | Wang L, Gao Z, Li C, et al. Computed tomography-based delta-radiomics analysis for discriminating radiation pneumonitis in patients with esophageal cancer after radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2021, 111(2): 443-455. DOI: 10.1016/j.ijrobp.2021.04.047. doi:10.1016/j.ijrobp.2021.04.047 |
[14] | Adachi T, Nakamura M, Shintani T, et al. Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy[J]. Med Phys, 2021, 48(4): 1781-1791. DOI: 10.1002/mp.14769. doi:10.1002/mp.14769pmid:33576510 |
[15] | Hirose TA, Arimura H, Ninomiya K, et al. Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy[J]. Sci Rep, 2020, 10(1): 20424. DOI: 10.1038/s41598-020-77552-7. doi:10.1038/s41598-020-77552-7 |
[16] | van Timmeren JE, Leijenaar RTH, van Elmpt W, et al. Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images[J]. Radiother Oncol, 2017, 123(3): 363-369. DOI: 10.1016/j.radonc.2017.04.016. doi:S0167-8140(17)30157-3pmid:28506693 |
[17] | 杜峰, 王强, 王玮, 等. CBCT影像组学联合构建Nomogram模型预测食管癌放疗患者放射性肺炎[J]. 中华放射肿瘤学杂志, 2021, 30(6): 549-555. DOI: 10.3760/cma.j.cn113030-20200703-00339. doi:10.3760/cma.j.cn113030-20200703-00339 |
[18] | Qin Q, Shi A, Zhang R, et al. Cone-beam CT radiomics features might improve the prediction of lung toxicity after SBRT in stage Ⅰ NSCLC patients[J]. Thorac Cancer, 2020, 11(4): 964-972. DOI: 10.1111/1759-7714.13349. doi:10.1111/1759-7714.13349 |
[19] | Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929. DOI: 10.1056/NEJMoa1709937. doi:10.1056/NEJMoa1709937 |
[20] | 山东省医学会肺癌多学科联合委员会. 山东省医学会肺癌多学科规范化诊疗指南[J]. 国际肿瘤学杂志, 2021, 48(5): 257-274. DOI: 10.3760/cma.j.cn371439-20210222-00052. doi:10.3760/cma.j.cn371439-20210222-00052 |
[21] | Naidoo J, Nishino M, Patel SP, et al. Immune-related pneumonitis after chemoradiotherapy and subsequent immune checkpoint bloc-kade in unresectable stage Ⅲ non-small-cell lung cancer[J]. Clin Lung Cancer, 2020, 21(5): e435-e444. DOI: 10.1016/j.cllc.2020.02.025. doi:10.1016/j.cllc.2020.02.025 |
[22] | 王慧, 夏茸, 魏清雯, 等. 非小细胞肺癌免疫检查点抑制剂相关性肺炎的危险因素及预测生物标志物[J]. 国际肿瘤学杂志, 2021, 48(5): 296-301. DOI: 10.3760/cma.j.cn371439-20210115-00057. doi:10.3760/cma.j.cn371439-20210115-00057 |
[23] | Voong KR, Hazell SZ, Fu W, et al. Relationship between prior radiotherapy and checkpoint-inhibitor pneumonitis in patients with advanced non-small-cell lung cancer[J]. Clin Lung Cancer, 2019, 20(4): e470-e479. DOI: 10.1016/j.cllc.2019.02.018. doi:10.1016/j.cllc.2019.02.018 |
[24] | Lu X, Wang J, Zhang T, et al. Comprehensive pneumonitis profile of thoracic radiotherapy followed by immune checkpoint inhibitor and risk factors for radiation recall pneumonitis in lung cancer[J]. Front Immunol, 2022, 13: 918787. DOI: 10.3389/fimmu.2022.918787. doi:10.3389/fimmu.2022.918787 |
[25] | Colen RR, Fujii T, Bilen MA, et al. Radiomics to predict immuno-therapy-induced pneumonitis: proof of concept[J]. Invest New Drugs, 2018, 36(4): 601-607. DOI: 10.1007/s10637-017-0524-2. doi:10.1007/s10637-017-0524-2 |
[26] | Cheng J, Pan Y, Huang W, et al. Differentiation between immune checkpoint inhibitor-related and radiation pneumonitis in lung cancer by CT radiomics and machine learning[J]. Med Phys, 2022, 49(3): 1547-1558. DOI: 10.1002/mp.15451. doi:10.1002/mp.15451pmid:35026041 |
[27] | Wass R, Hochmair M, Kaiser B, et al. Durvalumab after sequential high dose chemoradiotherapy versus standard of care (SoC) for stage Ⅲ NSCLC: a bi-centric trospective comparison focusing on pulmonary toxicity[J]. Cancers (Basel), 2022, 14(13): 3226. DOI: 10.3390/cancers14133226. doi:10.3390/cancers14133226 |
[28] | Qiu Q, Xing L, Wang Y, et al. Development and validation of a radiomics nomogram using computed tomography for differentiating immune checkpoint inhibitor-related pneumonitis from radiation pneumonitis for patients with non-small cell lung cancer[J]. Front Immunol, 2022, 13: 870842. DOI: 10.3389/fimmu.2022.870842. doi:10.3389/fimmu.2022.870842 |
[29] | Chen X, Sheikh K, Nakajima E, et al. Radiation versus immune checkpoint inhibitor associated pneumonitis: distinct radiologic morphologies[J]. Oncologist, 2021, 26(10): e1822-e1832. DOI: 10.1002/onco.13900. doi:10.1002/onco.13900pmid:34251728 |
[30] | Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Sci Data, 2016, 3: 160018. DOI: 10.1038/sdata.2016.18. doi:10.1038/sdata.2016.18 |
[31] | Vesteghem C, Brøndum RF, Sønderkær M, et al. Implementing the FAIR data principles in precision oncology: review of supporting initiatives[J]. Brief Bioinform, 2020, 21(3): 936-945. DOI: 10.1093/bib/bbz044. doi:10.1093/bib/bbz044pmid:31263868 |
[32] | Ibrahim A, Primakov S, Beuque M, et al. Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework[J]. Methods, 2021, 188: 20-29. DOI: 10.1016/j.ymeth.2020.05.022. doi:10.1016/j.ymeth.2020.05.022pmid:32504782 |
[33] | Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept "black box" medicine?[J]. Ann Intern Med, 2020, 172(1): 59-60. DOI: 10.7326/M19-2548. doi:10.7326/M19-2548pmid:31842204 |
[34] | Pinker K, Chin J, Melsaether AN, et al. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment[J]. Radiology, 2018, 287(3): 732-747. DOI: 10.1148/radiol.2018172171. doi:10.1148/radiol.2018172171pmid:29782246 |
[1] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 吴嘉钰, 刘加成.孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452. |
[3] | 胡格, 苏杰, 李蔷薇, 徐鹏, 徐秀理, 钱晓涛.食管癌和肺癌患者放疗前CD4/CD8比值及总B淋巴细胞预测放射性肺炎的价值[J]. 国际肿瘤学杂志, 2021, 48(9): 523-526. |
[4] | 杨蕾, 张传玉, 张在先, 刘欢.非小细胞肺癌影像基因组学[J]. 国际肿瘤学杂志, 2020, 47(9): 555-559. |
[5] | 陆海迪, 沈浮, 陆建平, 郝立强.基于磁共振高分辨T2WI影像组学预测直肠癌新辅助治疗后病理完全反应的研究[J]. 国际肿瘤学杂志, 2020, 47(10): 593-597. |
[6] | 国建林, 张传玉, 于华龙, 张在先.影像基因组学在肺癌中的研究进展[J]. 国际肿瘤学杂志, 2019, 46(9): 544-547. |
[7] | 郭天慧,王浩铭,任瑞美,徐金鹏,宋浩,肖文静,徐名金,刘希光.影像组学与影像基因组学在肺癌中的研究进展[J]. 国际肿瘤学杂志, 2018, 45(8): 566-569. |
[8] | 鲍玲丽, 吴爱兵, 杨志雄.血清KL-6在肺癌放射性肺炎中的研究进展[J]. 国际肿瘤学杂志, 2013, 40(8): 593-595. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||