国际肿瘤学杂志››2018,Vol. 45››Issue (8): 566-569.doi:10.3760/cma.j.issn.1673-422X.2018.09.012
郭天慧,王浩铭,任瑞美,徐金鹏,宋浩,肖文静,徐名金,刘希光
出版日期:
2018-09-08发布日期:
2018-11-15通讯作者:
刘希光 E-mail:xiguangliu1962@sina.comGuo Tianhui, Wang Haoming, Ren Ruimei, Xu Jinpeng, Song Hao, Xiao Wenjing, Xu Mingjin, Liu Xiguang
Online:
2018-09-08Published:
2018-11-15Contact:
Liu Xiguang E-mail:xiguangliu1962@sina.com摘要:影像组学和影像基因组学通过提取、筛选并分析最有价值的定量影像组学特征,用以解析肿瘤生物学特征和临床信息。近年来,已有大量研究表明影像组学在肺癌的诊断、治疗、预测疗效及预后等方面发挥作用。而影像基因组学进一步将影像组学特征与基因组学、蛋白质组学等联系起来,在肺癌基因表型的预测及个体化精准治疗中显示出巨大价值。影像组学和影像基因组学具有无创、定量、可重复等特点,可多方位提供肿瘤生物学特性,有望在今后肺癌的精准医疗中得到广泛应用。
郭天慧,王浩铭,任瑞美,徐金鹏,宋浩,肖文静,徐名金,刘希光. 影像组学与影像基因组学在肺癌中的研究进展[J]. 国际肿瘤学杂志, 2018, 45(8): 566-569.
Guo Tianhui, Wang Haoming, Ren Ruimei, Xu Jinpeng, Song Hao, Xiao Wenjing, Xu Mingjin, Liu Xiguang. Progress of radiomics and radiogenomics in lung cancer[J]. Journal of International Oncology, 2018, 45(8): 566-569.
[1] 刘再毅, 梁长虹. 促进影像组学的转化研究[J]. 中国医学影像技术, 2017, 33(12): 17651767. DOI: 10.13929/j.10033289.201711133. [2] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563577. DOI: 10.1148/radiol.2015151169. [3] Kuo MD, Jamshidi N. Behind the numbers: decoding molecular phenotypes with radiogenomicsguiding principles and technical considerations[J]. Radiology, 2014, 270(2): 320325. DOI: 10.1148/radiol.13132195. [4] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749762. DOI: 10.1038/nrclinonc.2017.141. [5] Kamiya A, Murayama S, Kamiya H, et al. Kurtosis and skewness assessments of solid lung nodule density histograms: differentiating malignant from benign nodules on CT[J]. Jpn J Radiol, 2014, 32(1): 1421. DOI: 10.1007/s116040130264y. [6] Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology[J]. Front Oncol, 2016, 6: 71. DOI: 10.3389/fonc.2016.00071. [7] Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diagnostic factor for histologic subtype classification of nonsmall cell lung cancer[J]. Eur Radiol, 2018, 28(7): 27722778. DOI: 10.1007/s0033001752211. [8] Hofmanninger J, Langs G. Mapping visual features to semantic profiles for retrieval in medical imaging[C]. Computer Vision and Pattern Recognition IEEE, 2015: 457465. [9] Peikert T, Duan F, Rajagopalan S, et al. Novel highresolution computed tomographybased radiomic classifier for screenidentified pulmonary nodules in the National Lung Screening Trial[J]. PLoS One, 2018, 13(5): e0196910. DOI: 10.1371/journal.pone.0196910. [10] Tu SJ, Wang CW, Pan KT, et al. Localized thinsection CT with radiomics feature extraction and machine learning to classify earlydetected pulmonary nodules from lung cancer screening[J]. Phys Med Biol, 2018, 63(6): 065005. DOI: 10.1088/13616560/aaafab. [11] Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in lowdose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4): 15371549. DOI: 10.1002/mp.12820. [12] Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7: 41674. DOI: 10.1038/srep41674. [13] Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates[J]. Clin Radiol, 2017, 72(6): 443450. DOI: 10.1016/j.crad.2017.01.015. [14] Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14): 39223930. DOI: 10.1158/00085472.CAN170122. [15] Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, KRAS, and ALK mutations in nonsmall cell lung cancer[J]. Eur Radiol, 2016, 26(1): 3242. DOI: 10.1007/s0033001538140. [16] Zhou JY, Zheng J, Yu ZF, et al. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations[J]. Eur Radiol, 2015, 25(5): 12571266. DOI: 10.1007/s003300143516z. [17] Kim TJ, Lee CT, Jheon SH, et al. Radiologic characteristics of surgically resected nonsmall cell lung cancer with ALK rearrangement or EGFR mutations[J]. Ann Thorac Surg, 2016, 101(2): 473480. DOI: 10.1016/j.athoracsur.2015.07.062. [18] Wang H, Schabath MB, Liu Y, et al. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations[J]. Eur J Radiol, 2016, 85(11): 19341940. DOI: 10.1016/j.ejrad.2016.08.023. [19] Choi CM, Kim MY, Hwang HJ, et al. Advanced adenocarcinoma of the lung: comparison of CT characteristics of patients with anaplastic lymphoma kinase gene rearrangement and those with epidermal growth factor receptor mutation[J]. Radiology, 2015, 275(1): 272279. DOI: 10.1148/radiol.14140848. [20] Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements?[J]. Lung Cancer, 2015, 90(2): 321325. DOI: 10.1016/j.lungcan.2015.09.018. [21] Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41): e1753. DOI: 10.1097/MD.0000000000001753. [22] Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6: 33860. DOI: 10.1038/srep33860. [23] Huynh E, Coroller TP, Narayan V, et al. CTbased radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J]. Radiother Oncol, 2016, 120(2): 258266. DOI: 10.1016/j.radonc.2016.05.024. [24] Takeda K, Takanami K, Shirata Y, et al. Clinical utility of texture analysis of 18FFDG PET/CT in patients with stage Ⅰ lung cancer treated with stereotactic body radiotherapy[J]. J Radiat Res, 2017, 58(6): 862869. DOI: 10.1093/jrr/rrx050. [25] Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in nonsmall cell lung cancer[J]. Radiother Oncol, 2016, 119(3): 480486. DOI: 10.1016/j.radonc.2016.04.004. [26] Coroller TP, Agrawal V, Huynh E, et al. Radiomicbased pathological response prediction from primary tumors and lymph nodes in NSCLC[J]. J Thorac Oncol, 2017, 12(3): 467476. DOI: 10.1016/j.jtho.2016.11.2226. [27] Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma[J]. PLoS One, 2015, 10(3): e0118261. DOI: 10.1371/journal.pone.0118261. [28] Song J, Liu Z, Zhong W, et al. Nonsmall cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis[J]. Sci Rep, 2016, 6: 38282. DOI: 10.1038/srep38282. [29] Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage Ⅲ nonsmall cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2014, 90(4): 834842. DOI: 10.1016/j.ijrobp.2014.07.020. [30] Huang Y, Liu Z, He L, et al. Radiomics signature: a potential biomarker for the prediction of diseasefree survival in earlystage (Ⅰ or Ⅱ) nonsmall cell lung cancer[J]. Radiology, 2016, 281(3): 947957. DOI: 10.1148/radiol.2016152234. [31] Depeursinge A, Yanagawa M, Leung AN, et al. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT[J]. Med Phys, 2015, 42(4): 20542063. DOI: 10.1118/1.4916088. [32] Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging[J]. Sci Rep, 2016, 6: 23428. DOI: 10.1038/srep23428. [33] He L, Huang Y, Ma Z, et al. Effects of contrastenhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule[J]. Sci Rep, 2016, 6: 34921. DOI: 10.1038/srep34921. [34] Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with nonsmall cell lung cancer?[J]. Med Phys, 2015, 42(12): 67846797. DOI: 10.1118/1.4934826. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[3] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[4] | 贺嘉慧, 胡钦勇.基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. |
[5] | 曾利武, 杜雨强, 张鹏, 陶凯雄.直肠癌侧方淋巴结转移的影像评估进展[J]. 国际肿瘤学杂志, 2023, 50(4): 248-251. |
[6] | 李雄安, 颜艳艳.丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[7] | 曹晓辉, 于荭, 李万湖.基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111. |
[8] | 左小平, 刘晓川, 吴西强, 李周, 夏天, 刘国凤.老年早期肺癌患者经胸腔镜肺切除术后心律失常发生的危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(12): 711-716. |
[9] | 陈郁, 许华, 刘海, 陈士新.基于CT影像学特征的恶性肺纯磨玻璃结节患者病理分型预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(11): 655-660. |
[10] | 张万芳, 王尤, 苏晶, 陈刚, 周福祥.肺原发尤文肉瘤/原始神经外胚层瘤1例[J]. 国际肿瘤学杂志, 2023, 50(1): 62-64. |
[11] | 宋彤骏, 邓睿, 费蕾, 雷金华, 曹风军.CT与超声引导下经皮肺或胸膜病变穿刺活检的有效性和安全性比较[J]. 国际肿瘤学杂志, 2022, 49(9): 526-531. |
[12] | 杨莎, 杨晓华, 王苏华, 薛晓燕, 徐俊.老年肺癌胸腔镜手术后下肢深静脉血栓的危险因素分析及预测模型的建立和验证[J]. 国际肿瘤学杂志, 2022, 49(9): 532-536. |
[13] | 王津, 张耀圣, 孙婷婷, 王丹, 胡乃东.以前胸壁聚集性多发蕈状肿物为表现的肺腺鳞状细胞癌皮肤转移1例[J]. 国际肿瘤学杂志, 2022, 49(9): 575-576. |
[14] | 吴嘉钰, 刘加成.孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452. |
[15] | 陈煌婧, 朱鹏飞, 张晴, 陈桂芳, 杨春林, 何英.超声造影和CT引导下经皮穿刺活检在周围型肺肿块诊断中临床价值的比较[J]. 国际肿瘤学杂志, 2022, 49(8): 459-463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||