国际肿瘤学杂志››2022,Vol. 49››Issue (6): 362-365.doi:10.3760/cma.j.cn371439-20211215-00069
收稿日期:
2021-12-15修回日期:
2022-01-13出版日期:
2022-06-08发布日期:
2022-06-30通讯作者:
邵喜英,王晓稼,孔春燕 E-mail:shaoxy@zjcc.org.cn;wangxj@zjcc.org.cn基金资助:
Wu Jiayi1, Chen Keyu1, Shao Xiying2(), Wang Xiaojia2(
)
Received:
2021-12-15Revised:
2022-01-13Online:
2022-06-08Published:
2022-06-30Contact:
Shao Xiying,Wang Xiaojia E-mail:shaoxy@zjcc.org.cn;wangxj@zjcc.org.cnSupported by:
摘要:
三阴性乳腺癌是一种预后较差的乳腺癌亚型,缺乏有效的治疗手段。细胞周期蛋白依赖性激酶(CDK)4/6抑制剂能够通过影响三阴性乳腺癌免疫微环境促进抗肿瘤免疫,如提高肿瘤细胞表面程序性死亡蛋白配体-1蛋白表达、增强T细胞活化和抗原呈递、改变T细胞亚群比例、诱导淋巴细胞浸润等。免疫微环境的变化与肿瘤进展关系密切,但其机制极其复杂。探讨CDK4/6抑制剂影响免疫微环境的作用机制及相关的生物标志物,可为三阴性乳腺癌的诊治提供新的方向。
吴家宜, 陈柯羽, 邵喜英, 王晓稼. CDK4/6抑制剂通过调控三阴性乳腺癌免疫微环境促进抗肿瘤免疫的机制研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 362-365.
Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia. Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer[J]. Journal of International Oncology, 2022, 49(6): 362-365.
[1] | Shen M, Pan H, Chen Y, et al. A review of current progress in triple-negative breast cancer therapy[J]. Open Med (Wars), 2020, 15(1): 1143-1149. DOI: 10.1515/med-2020-0138. doi:10.1515/med-2020-0138 |
[2] | Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265): 1817-1828. DOI: 10.1016/S0140-6736(20)32531-9. doi:10.1016/S0140-6736(20)32531-9 |
[3] | de Melo Gagliato D, C Buzaid A, Perez-Garcia JM, et al. CDK4/6 inhibitors in hormone receptor-positive metastatic breast cancer: current practice and knowledge[J]. Cancers (Basel), 2020, 12(9): 2480. DOI: 10.3390/cancers12092480. doi:10.3390/cancers12092480 |
[4] | Roberts PJ, Kumarasamy V, Witkiewicz AK, et al. Chemotherapy and CDK4/6 inhibitors: unexpected bedfellows[J]. Mol Cancer Ther, 2020, 19(8): 1575-1588. DOI: 10.1158/1535-7163.MCT-18-1161. doi:10.1158/1535-7163.MCT-18-1161 |
[5] | Bonelli M, La Monica S, Fumarola C, et al. Multiple effects of CDK4/6 inhibition in cancer: from cell cycle arrest to immu-nomodulation[J]. Biochem Pharmacol, 2019, 170: 113676. DOI: 10.1016/j.bcp.2019.113676. doi:10.1016/j.bcp.2019.113676 |
[6] | Uzhachenko RV, Bharti V, Ouyang Z, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors[J]. Cell Rep, 2021, 35(1): 108944. DOI: 10.1016/j.celrep.2021.108944. doi:10.1016/j.celrep.2021.108944 |
[7] | Fleisher B, Lezeau J, Werkman C, et al. In vitro to clinical translation of combinatorial effects of doxorubicin and abemaciclib in Rb-positive triple negative breast cancer: a systems-based pharmacokinetic/pharmacodynamic modeling approach[J]. Breast Cancer (Dove Med Press), 2021, 13: 87-105. DOI: 10.2147/BCTT.S292161. doi:10.2147/BCTT.S292161 |
[8] | Franzoi MA, de Azambuja E. Atezolizumab in metastatic triple-negative breast cancer: IMpassion130 and 131 trials-how to explain different results?[J]. ESMO Open, 2020, 5(6): e001112. DOI: 10.1136/esmoopen-2020-001112. doi:10.1136/esmoopen-2020-001112 |
[9] | Ameratunga M, Kipps E, Okines AFC, et al. To cycle or Fight-CDK4/6 inhibitors at the crossroads of anticancer immunity[J]. Clin Cancer Res, 2019, 25(1): 21-28. DOI: 10.1158/1078-0432.CCR-18-1999. doi:10.1158/1078-0432.CCR-18-1999pmid:30224338 |
[10] | Di Sante G, Pagé J, Jiao X, et al. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology[J]. Expert Rev Anticancer Ther, 2019, 19(7): 569-587. DOI: 10.1080/14737140.2019.1615889. doi:10.1080/14737140.2019.1615889 |
[11] | Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase desta-bilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance[J]. Nature, 2018, 553(7686): 91-95. DOI: 10.1038/nature25015. doi:10.1038/nature25015 |
[12] | Teh JLF, Aplin AE. Arrested developments: CDK4/6 inhibitor resis-tance and alterations in the tumor immune microenvironment[J]. Clin Cancer Res, 2019, 25(3): 921-927. DOI: 10.1158/1078-0432.CCR-18-1967. doi:10.1158/1078-0432.CCR-18-1967 |
[13] | Zhang QF, Li J, Jiang K, et al. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner[J]. Theranostics, 2020, 10(23): 10619-10633. DOI: 10.7150/thno.44871. doi:10.7150/thno.44871 |
[14] | Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhi-bitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade[J]. Cell Rep, 2018, 22(11): 2978-2994. DOI: 10.1016/j.celrep.2018.02.053. doi:S2211-1247(18)30234-1pmid:29539425 |
[15] | Charles A, Bourne CM, Korontsvit T, et al. Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy[J]. Oncoimmunology, 2021, 10(1): 1916243. DOI: 10.1080/2162402X.2021.1916243. doi:10.1080/2162402X.2021.1916243 |
[16] | Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity[J]. Nature, 2017, 548(7668): 471-475. DOI: 10.1038/nature23465. doi:10.1038/nature23465 |
[17] | Petroni G, Formenti SC, Chen-Kiang S, et al. Immunomodulation by anticancer cell cycle inhibitors[J]. Nat Rev Immunol, 2020, 20(11): 669-679. DOI: 10.1038/s41577-020-0300-y. doi:10.1038/s41577-020-0300-y |
[18] | Huang H, Zhou J, Chen H, et al. The immunomodulatory effects of endocrine therapy in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 19. DOI: 10.1186/s13046-020-01788-4. doi:10.1186/s13046-020-01788-4 |
[19] | Heckler M, Ali LR, Clancy-Thompson E, et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation[J]. Cancer Discov, 2021, 11(10): 2564-2581. DOI: 10.1158/2159-8290.CD-20-1540. doi:10.1158/2159-8290.CD-20-1540pmid:33941591 |
[20] | Lai AY, Sorrentino JA, Dragnev KH, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy[J]. J Immunother Cancer, 2020, 8(2): e000847. DOI: 10.1136/jitc-2020-000847. doi:10.1136/jitc-2020-000847 |
[21] | Sobhani N, D'Angelo A, Pittacolo M, et al. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer[J]. Cells, 2019, 8(4): 321. DOI: 10.3390/cells8040321. doi:10.3390/cells8040321 |
[22] | Shen H, Yang ES, Conry M, et al. Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies[J]. Genes Dis, 2019, 6(3): 232-246. DOI: 10.1016/j.gendis.2019.06.006. doi:10.1016/j.gendis.2019.06.006 |
[23] | Wang H, Najibi AJ, Sobral MC, et al. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors[J]. Nat Commun, 2020, 11(1): 5696. DOI: 10.1038/s41467-020-19540-z. doi:10.1038/s41467-020-19540-zpmid:33173046 |
[24] | Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge[J]. Cells, 2019, 8(9): 957. DOI: 10.3390/cells8090957. doi:10.3390/cells8090957 |
[25] | Agostinetto E, Caparica R, Caparica E. CDK4/6 inhibition in HR-positive early breast cancer: are we putting all eggs in one basket?[J]. ESMO Open, 2020, 5(6): e001132. DOI: 10.1136/esmoopen-2020-001132. doi:10.1136/esmoopen-2020-001132 |
[26] | Volpari T, de Santis F, Bracken AP, et al. Anticancer innovative therapy: highlights from the ninth annual meeting[J]. Cytokine Growth Factor Rev, 2020, 51: 1-9. DOI: 10.1016/j.cytogfr.2019. 12.002. doi:10.1016/j.cytogfr.2019. 12.002 |
[1] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙.肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智.CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[5] | 钱晓涛, 石子宜, 胡格.Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[6] | 解淑萍, 孙亚红, 汪超.早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[7] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰.髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[8] | 顾花艳, 朱腾, 郭贵龙.乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[9] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏.免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[10] | 邓隽军, 赵大勇, 李淼.免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
[11] | 潘书兰, 刘畅, 贺平.福瑞替尼对三阴性乳腺癌血管生成、肿瘤生长及IRE1-ASK1-JNK通路的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 457-462. |
[12] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英.免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[13] | 徐凡, 王婧, 毛宁, 王世雄, 李金茂.戈沙妥珠单抗治疗晚期三阴性乳腺癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 508-510. |
[14] | 过慈良, 江春平, 吴俊华.肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[15] | 李彬, 张桂芳, 周林静, 杨小冬, 何秋立, 贾思思, 黄普超, 梁嘉欣.三阴性乳腺癌中PIK3CA基因状态与临床特征及预后的关系[J]. 国际肿瘤学杂志, 2023, 50(5): 263-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||