国际肿瘤学杂志››2014,Vol. 41››Issue (3): 172-177.doi:10.3760/cma.j.issn.1673-422X.2014.03.004
朱蕾, 隋华, 邓皖利
出版日期:
2014-03-08发布日期:
2014-03-17通讯作者:
邓皖利,E-mail:dwl0707@126.com E-mail:dwl0707@126.com基金资助:
ZHU Lei, SUI Hua, DENG Wan-Li
Online:
2014-03-08Published:
2014-03-17Contact:
Deng Wanli, E-mail: dwl0707@126.com E-mail:dwl0707@126.com摘要:上皮间质转化(EMT)是上皮细胞向间充质细胞分化的过程,EMT在恶性肿瘤的侵袭转移中广泛存在。EMT的发生与多种细胞因子、信号转导通路及转录因子有关,受多种影响因素的共同调控。上皮细胞表型的不同程度转化是细胞内外信号传递共同作用的结果。细胞外信号通过与细胞表面特异性受体相结合将信号转入细胞内,再通过胞内的信号转导途径,活化不同的核内转导因子,最终调节转导基因的表达。
朱蕾, 隋华, 邓皖利. 信号通路调控上皮间质转化参与肿瘤侵袭[J]. 国际肿瘤学杂志, 2014, 41(3): 172-177.
ZHU Lei, SUI Hua, DENG Wan-Li. Advances in signal transduction pathway regulating EMT in tumor invasion and metastasis[J]. Journal of International Oncology, 2014, 41(3): 172-177.
[1] Theiry JP, Acloque H, Huang RY, et al. Epithelialmesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890. [2] Liu Y. New insights into epithelialmesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21(2):212-222. [3] LópezNovoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression[J]. EMBO Mol Med, 2009, 1(6-7):303-314. [4] Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of twist1 in hepatocellular carcinoma:its role in vasculogenic mimicry[J]. Hepatology, 2010, 51(2):545-556. [5] Sabe H. Cancer early dissemination:cancerous epithelial mesenchymal transdifferentiation and transforming growth factor β signaling[J]. J Biochem, 2011, 149(6):633-639. [6] Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic[J]. Biochim Biophys Acta, 2009, 1796(2):75-90. [7] Meng X, Ezzati P, Wilkins JA. Requirement of podocalyxin in TGF-beta induced epithelial mesenchymal transition[J]. PLoS One, 2011, 6(4):e18715. [8] Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions[J]. Int J Oncol, 2010, 37(3):663-668. [9] Li QQ, Xu JD, Wang WJ, et al. Twist1-mediated Adriamycin-induced epithelialmesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells[J]. Clin Cancer Res, 2009, 15(8):2657-2665. [10] Rosanò L, Cianfrocca R, Spinella F, et al. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells[J]. Clin Cancer Res, 2011, 17(8):2350-2360. [11] Davalos V, Moutinho C, Villanueva A, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis[J]. Oncogene, 2012, 31(16):2062-2074. [12] Natalwala A, Spychal R, Tselepis C. Epithelial-mesenchyrreal transition mediated tumourigenesis in the gastrointestinal tract[J]. World J Gastroenterol, 2008, 14(24):3792-3797. [13] Ungefroren H, Groth S, Sebens S, et al. Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1[J]. Mol Cancer, 2011, 10:67. [14] Veerasamy M, Phanish M, Dockrell ME. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells[J]. PLoS One, 2013, 8(1):e51842. [15] Chitalia V, Shivanna S, Martorell J, et al. cCbl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation[J]. J Biol Chem, 2013, 288(32):23505-23517. [16] Zhao JH, Luo Y, Jiang YG, et al. Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastaic phenotypes induced by HIF-1α[J]. Cancer Invest, 2011, 29(6):377-382. [17] Mao Y, Xu J, Li Z, et al. The Role of Nuclear β-Catenin Accumulation in the Twist2Induced Ovarian Cancer EMT[J]. PLoS One, 2013, 8(11):e78200. [18] Kamino M, Kishida M, Kibe T, et al. Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMP-2[J]. Cancer Sci, 2011, 102(3):540548. [19] Kessenbrock K, Dijkgraaf GJ, Lawson DA, et al. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway[J]. Cell Stem Cell, 2013, 13(3):300-313. [20] Dey N, Young B, Abramovitz M, et al. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner[J]. PLoS One, 2013, 8(10):e77425. [21] Prasad CP, Chaurasiya SK, Axelsson L, et al. WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells[J]. Mol Oncol, 2013, 7(5):870-883. [22] Li Y, Ma J, Qian X, et al. Regulation of EMT by Notch Signaling Pathway in Tumor Progression[J]. Curr Cancer Drug Targets, 2013, 13(9):957-962. [23] Wang T, Xuan X, Pian L, et al. Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail[J]. Tumour Biol, 2013, In press. [24] Bao B, Wang Z, Ali S, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells[J]. Cancer Lett, 2011, 307(1):26-36. [25] Makinodan E, Marneros AG. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin[J]. Exp Dermatol, 2012, 21(11):847-852. [26] Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449[J]. N Engl J Med, 2009, 361(12):1173-1178. [27] Choe C, Shin YS, Kim SH, et al. Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway[J]. Anticancer Res, 2013, 33(9):3715-3723. [28] Isohata N, Aoyagi K, Mabuchi T, et al. Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus[J]. Int J Cancer, 2009, 125(5):1212-1221. [29] Chen JH, Wu H, Ma JP, et al. Effects of inhibition of Hedgehog signaling pathway for transforming growth factor-β-induced epithelial-mesenchymal transition[J]. Zhonghua Yi Xue Za Zhi, 2013, 93(26):2075-2078. [30] Lei J, Ma J, Ma Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligandindependent manner[J]. Mol Cancer, 2013, 12:66. [31] Ten Haaf A, Bektas N, Von Serenyi S, et al. Expression of the gliomaassociated oncogene homolog(GLI) 1 in human breast cancer is associated with unfavourable overall survival[J]. BMC Cancer, 2009, 9:2-12. [32] Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis,cell invasion and differentiation[J]. Carcinogenesis, 2009, 30(1):131-140. [33] Keysar SB, Le PN, Anderson RT, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer[J]. Cancer Res, 2013, 73(11):3381-3392. [34] Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324(5933):1457-1461. [35] Inaguma S, Kasai K, Ikeda H. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin[J]. Oncogene, 2011, 30(6):714-723. [36] Hong KO, Kim JH, Hong JS, et al. Inhibition of Akt activity induces the mesenchymaltoepithelial reverting transition with restoring E-cadherin expression in KB and KOSCC25B oral squamous cell carcinoma cells[J]. J Exp Clin Cancer Res, 2009, 28:28. [37] Yoo YA, Kang MH, Lee HJ, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP9 pathway in gastric cancer[J]. Cancer Res, 2011, 71(22):7061-7070. [38] Lin CY, Tsai PH, Kandaswami CC, et al. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells[J]. Mol Cancer, 2011, 10:87. [39] Srivastava R K, Kurzrock R, Shankar S. MS-275 sensitizes TRAILresistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo[J]. Mol Cancer Ther, 2010, 9(12):3254-3266. [40] Yeasmin S, Nakayama K, Rahman MT, et al. Loss of MKK4 expression in ovarian cancer:a potential role for the epithelial to mesenchymal transition[J]. Int J Cancer, 2011, 128(1):94104. [41] Shao M, Cao L, Shen C, et al. Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase[J]. Cancer Res, 2009, 69(24):9192-9201. [42] Chua HL, BhatNakshatri P, Clare SE, et al. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1and ZEB-2[J]. Oncogene, 2007, 26(5):711-724. [43] Guo G, Yao W, Zhang Q, et al. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway[J]. PLoS One, 2013, 8(8):e72079. [44] 唐勇, 王辉, 陈伟娟, 等. EMT经p38-MAPK调节乳腺癌MCF-7细胞P-gp介导的多药耐药[J]. 中国肿瘤生物治疗杂志, 2010, 17(2):144-148. [45] Zhou X, Zhang Y, Han N, et al. α-Enolase (ENO1) inhibits epithelial-mesenchymal transition in the A549 cell line by suppressing ERK1/2 phosphorylation[J]. Zhongguo Fei Ai Za Zhi, 2013, 16(5):221-226. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[3] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[4] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英.免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[5] | 杨丽蓉, 王羽丰.预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[6] | 李雄安, 颜艳艳.丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[7] | 马培晗, 张灵敏, 路宁, 张明鑫.麻醉对肝细胞癌复发转移的影响[J]. 国际肿瘤学杂志, 2023, 50(2): 117-121. |
[8] | 吕璐, 孙鹏飞, 崔腾璐.子宫内膜癌颈部淋巴结转移综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(11): 701-704. |
[9] | 赵建昊, 段衍超.多发性骨髓瘤髓外病变发病机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 55-59. |
[10] | 张露, 周菊英, 马辰莺, 林州.复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. |
[11] | 彭琛, 谢印通, 张昕, 谢鹏.宫颈癌维持治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(7): 430-435. |
[12] | 张绍鹏, 孔远, 潘国强, 朱丽, 王大广.全身化疗联合腹腔热灌注治疗胃癌1例[J]. 国际肿瘤学杂志, 2022, 49(5): 316-318. |
[13] | 井文君, 赵文文, 冯青青, 赵文飞, 赵丽丽, 张雪, 魏红梅.miR-34家族用于胃癌治疗的分子基础及临床前景[J]. 国际肿瘤学杂志, 2022, 49(11): 681-686. |
[14] | 王斌, 周江云, 刘曦.不同放疗方案治疗晚期食管鳞状细胞癌的临床价值评析[J]. 国际肿瘤学杂志, 2021, 48(8): 484-488. |
[15] | 侯江厚, 姚颖杰, 詹晓燕, 杨奕梅.Hsp90与SIRT1相互作用对肺癌细胞发生EMT的调控作用[J]. 国际肿瘤学杂志, 2021, 48(4): 200-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||