国际肿瘤学杂志››2014,Vol. 41››Issue (8): 611-614.doi:10.3760/cma.j.issn.1673-422X.2014.08.017
刘召云
收稿日期:
2014-03-11修回日期:
2014-04-15出版日期:
2014-08-15发布日期:
2014-08-14通讯作者:
刘召云,E-mail:liuzhaoyun114@163.com E-mail:liuzhaoyun114@163.comLiu Zhaoyun
Received:
2014-03-11Revised:
2014-04-15Online:
2014-08-15Published:
2014-08-14Contact:
Liu Zhaoyun E-mail:liuzhaoyun114@163.com摘要:黑色素瘤特异性抗原作为肿瘤睾丸抗原家族成员之一,通过抑制维甲酸受体信号通路,阻碍调控细胞生长、分化的转录因子,促进肿瘤的形成。其在实体肿瘤及血液恶性肿瘤中均有表达,因此多用于肿瘤的诊断、转移监测及免疫细胞治疗。
刘召云. Prame基因在血液恶性肿瘤中的表达与治疗[J]. 国际肿瘤学杂志, 2014, 41(8): 611-614.
Liu Zhaoyun. Expression and therapy of Prame gene on hematologic malignancies[J]. Journal of International Oncology, 2014, 41(8): 611-614.
[1] Ikeda H, Lethé B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor[J]. Immunity,1997, 6(2): 199-208. [2] Schenk T, Stengel S, Goellner S, et al. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies[J]. Genes Chromosomes Cancer, 2007, 46(9): 796-804. [3] Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling[J]. Cell, 2005, 122(6): 835-847. [4] Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia[J]. Br J Haematol, 2001, 112(4): 916-926. [5] ProtoSiqueira R, FigueiredoPontes LL, Panepucci RA, et al. PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma[J]. Leuk Res, 2006, 30(11): 1333-1339. [6] Spanaki A, Perdikogianni C, Linardakis E, et al. Quantitative assessment of PRAME expression in diagnosis of childhood acute leukemia[J]. Leuk Res, 2007, 31(5): 639-642. [7] Steinbach D, Viehmann S, Zintl F, et al. PRAME gene expression in childhood acute lymphoblastic leukemia[J]. Cancer Genetics Cytogenet, 2002, 138(1): 89-91. [8] van den Ancker W, Ruben JM, Westers TM, et al. Priming of PRAME and WT1specific CD8+ T cells in healthy donors but not in AML patients in complete remission: implications for immunotherapy[J]. Oncoimmunology, 2013, 2(4): e23971. [9] Lynch RG, Graff RJ, Sirisinha S, et al. Myeloma proteins as tumorspecific transplantation antigens[J]. Proc Natl Acad Sci USA, 1972, 69(6): 1540-1544. [10] Crainie M, Belch AR, Mant MJ, et al. Overexpression of the receptor for hyaluronanmediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants[J]. Blood, 1999, 93(5): 1684-1696. [11] Qian J, Xie J, Hong S, et al. Dickkopf1 (DKK1) is a widely expressed and potent tumorassociated antigen in multiple myeloma[J]. Blood, 2007, 110(5): 1587-1594. [12] Abramenko IV, Belous NI, Kriachok IA, et al. Expression of PRAME gene in multiple myeloma[J]. Ter Arkh, 2004, 76(7): 77-81. [13] Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes[J]. Leuk Lymphoma, 2013, 54(7): 1442-1449. [14] Staege MS, BanningEichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin′s lymphoma cell lines with different sensitivity to cytotoxic drugs[J]. Exp Hematol, 2008, 36(7): 886-896. [15] Kewitz S, Staege MS. Knockdown of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells[J]. PLoS One, 2013, 8(2): e55897. [16] Beà S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution wholegenome profiling[J]. Blood, 2009, 113(13): 3059-3069. [17] Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects[J]. Am J Hematol, 2005, 79(4): 257-261. [18] Perna SK, De Angelis B, Pagliara D, et al. Interleukin 15 provides relief to CTLs from regulatory T cellmediated inhibition: implications for adoptive T cellbased therapies for lymphoma[J]. Clin Cancer Res, 2013, 19(1): 106-117. [19] Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following nonmyeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma[J]. J Clin Oncol, 2005, 23(10): 2346\-2357. [20] Colombo MP, Piconese S. RegulatoryTcell inhibition versus depletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer, 2007, 7(11): 880-887. [21] Cerundolo V, Hermans IF, Salio M. Dendritic cells: a journey from laboratory to clinic[J]. Nat Immunol, 2004, 5(1): 7-10. [22] Li L, Giannopoulos K, Reinhardt P, et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts[J]. Int J Oncol, 2006, 28(4): 855-861. [23] Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigenspecific T cell lines from pediatric patients with acute lymphoblastic leukemiaimplications for immunotherapy[J]. Clin Cancer Res, 2013, 19(18): 5079-5091. [24] Yong AS, Keyvanfar K, Eniafe R, et al. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemiaassociated antigens: implications for the graftversusleukemia effect and peptide vaccinebased immunotherapy[J]. Leukemia, 2008, 22(9): 1721-1727. [25] Kessler JH, Khan S, Seifert U, et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes[J]. Nat Immunol, 2011, 12(1): 45-67. [26] Tabarkiewicz J, Giannopoulos K. Definition of a target for immunotherapy and results of the first Peptide vaccination study in chronic lymphocytic leukemia[J]. Transplant Proc, 2010, 42(8): 3293-3296. [27] Griffioen M, Kessler JH, Borghi M, et al. Detection and functional analysis of CD8+ T cells specific for PRAME: a target for Tcell therapy[J]. Clin Cancer Res, 2006, 12(10): 3130-3136. [28] Weber JS, Vogelzang NJ, Ernstoff MS, et al. A Phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostatespecific membrane antigen in patients with advanced solid tumors[J]. J Immunother, 2011, 34(7): 556-567. [29] Bullinger L, Schlenk RF, Gtz M, et al. PRAMEinduced inhibition of retinoic acid receptor signalingmediated differentiationa possible target for ATRA response in AML without t(15;17)[J]. Clin Cancer Res, 2013, 19(9): 2562-2571. |
[1] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华.炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 张文馨, 夏泠, 彭晋, 周福祥.甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[4] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇.信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[5] | 萨蔷, 徐航程, 王佳玉.乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[6] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛.索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[7] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好.基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[8] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹.胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[9] | 滕远, 李莉娟, 张连生.MCL-1及其抑制剂在血液恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 119-122. |
[10] | 崔腾璐, 吕璐, 孙鹏飞.放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[11] | 李开春, 丁昌利, 于文艳.安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[12] | 王钧, 荣磊, 黄靖, 孟景晔, 郭智.经支气管肺活检及肺泡灌洗在血液肿瘤患者肺部并发症中的诊断价值[J]. 国际肿瘤学杂志, 2023, 50(7): 419-424. |
[13] | 过慈良, 江春平, 吴俊华.肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[14] | 陈秋, 王雷, 王明琦, 张梅.恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[15] | 李青珊, 谢鑫, 张楠, 刘帅.放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||