国际肿瘤学杂志››2014,Vol. 41››Issue (8): 641-644.doi:10.3760/cma.j.issn.1673-422X.2014.09.001
张玥,赵亮
出版日期:
2014-09-25发布日期:
2014-09-05通讯作者:
赵亮 E-mail:liangsmu@gmail.comZhang Yue, Zhao Liang
Online:
2014-09-25Published:
2014-09-05Contact:
Zhao Liang E-mail:liangsmu@gmail.com摘要:微小RNA(miRNA)作为一种短链非编码RNA,是转录后调控网络中重要的调控因子。研究表明miR-133家族成员miR-133a和miR-133b能在基因转录后水平调控靶基因表皮生长因子受体、原癌基因等的表达,调控丝裂原活化蛋白激酶和蛋白激酶B等细胞信号通路,影响肿瘤细胞增殖、侵袭和迁移过程。miR-133在肿瘤形成与进展过程中发挥关键作用,可能成为肿瘤治疗的新靶点。
张玥,赵亮. 微小RNA-133在肿瘤中的表达及调控机制[J]. 国际肿瘤学杂志, 2014, 41(8): 641-644.
Zhang Yue, Zhao Liang. Expression and regulatory mechanism of microRNA-133 in tumor[J]. Journal of International Oncology, 2014, 41(8): 641-644.
[1] Chen WS, Leung CM, Pan HW, et al. Silencing of miR11 and miR133a2 cluster expression by DNA hypermethylation in colorectal cancer[J]. Oncol Rep, 2012, 28 (3): 1069-1076. [2] Tao J, Wu D, Xu B, et al. microRNA133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor[J]. Oncol Rep, 2012, 27(6): 1967-1975. [3] Kojima S, Chiyomaru T, Kawakami K, et al. Tumour suppressors miR1 and miR133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer[J]. Br J Cancer, 2012, 106(2): 405-413. [4] Kano M, Seki N, Kikkawa N, et al. miR145, miR133a and miR133b: tumorsuppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma[J]. Int J Cancer, 2010, 127(12): 2804-2814. [5] Kawakami K, Enokida H, Chiyomaru T, et al. The functional significance of miR1 and miR133a in renal cell carcinoma[J]. Eur J Cancer, 2012, 48(6): 827-836. [6] Chiyomaru T, Enokida H, Tatarano S, et al. miR145 and miR133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer[J]. Br J Cancer, 2010, 102(5): 883-891. [7] Cui Q, Yu Z, Purisima EO, et al. Principles of microRNA regulation of a human cellular signaling network[J]. Mol Syst Biol, 2006, 2: 46. [8] Mutallip M, Nohata N, Hanazawa T, et al. Glutathione Stransferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR133alpha in head and neck squamous cell carcinoma (HNSCC)[J]. Int J Mol Med, 2011, 27(3): 345-352. [9] Nohata N, Hanazawa T, Kikkawa N, et al. Caveolin1 mediates tumor cell migration and invasion and its regulation by miR133a in head and neck squamous cell carcinoma[J]. Int J Oncol, 2011, 38(1): 209-217. [10] Wang H, An H, Wang B, et al. miR133a represses tumour growth and metastasis in colorectal cancer by targeting LIM and SH3 protein 1 and inhibiting the MAPK pathway[J]. Eur J Cancer, 2013, 49(18): 3924-3935. [11] Cui W, Zhang S, Shan C, et al. microRNA133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway[J]. FEBS J, 2013, 280(16): 3962-3974. [12] Moriya Y, Nohata N, Kinoshita T, et al. Tumor suppressive microRNA133a regulates novel molecular networks in lung squamous cell carcinoma[J]. J Hum Genet, 2012, 57(1): 38-45. [13] Wen D, Li S, Ji F, et al. miR133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer[J]. Tumour Biol, 2013, 34(2): 793-803. [14] Hu G, Chen D, Li X, et al. miR133b regulates the MET protooncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo[J]. Cancer Biol Ther, 2010, 10(2): 190-197. [15] Wong TS, Liu XB, ChungWai Ho A, et al. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling[J]. Int J Cancer, 2008, 123(2): 251-257. [16] Qin W, Dong P, Ma C, et al. MicroRNA133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways[J]. Oncogene, 2012, 31(36): 4067-4075. [17] Crawford M, Batte K, Yu L, et al. MicroRNA 133B targets prosurvival molecules MCL1 and BCL2L2 in lung cancer[J]. Biochem Biophys Res Commun, 2009, 388(3): 483-489. [18] Liu L, Shao X, Gao W, et al. MicroRNA133b inhibits the growth of nonsmallcell lung cancer by targeting the epidermal growth factor receptor[J]. FEBS J, 2012, 279(20): 3800-3812. [19] Chiyomaru T, Enokida H, Kawakami K, et al. Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer[J]. Urol Oncol, 2012, 30(4): 434-443. [20] Yoshino H, Chiyomaru T, Enokida H, et al. The tumoursuppressive function of miR1 and miR133a targeting TAGLN2 in bladder cancer[J]. Br J Cancer, 2011, 104(5): 808-818. [21] Nohata N, Hanazawa T, Kikkawa N, et al. Identification of novel molecular targets regulated by tumor suppressive miR1/miR133a in maxillary sinus squamous cell carcinoma[J]. Int J Oncol, 2011, 39(5): 1099-1107. [22] Uchida Y, Chiyomaru T, Enokida H, et al. MiR133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines[J]. Urol Oncol, 2013, 31(1): 115-123. [23] SainzJaspeado M, LagaresTena L, Lasheras J, et al. Caveolin1 modulates the ability of Ewing′s sarcoma to metastasize[J]. Mol Cancer Res, 2010, 8(11): 1489-1500. [24] Joshi B, Strugnell SS, Goetz JG, et al. Phosphorylated caveolin1 regulates Rho/ROCKdependent focal adhesion dynamics and tumor cell migration and invasion[J]. Cancer Res, 2008, 68(20): 8210-8220. [25] Zhao L, Wang H, Liu C, et al. Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1[J]. Gut, 2010, 59(9): 1226-1235. [26] Kinoshita T, Nohata N, WatanabeTakano H, et al. Actinrelated protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumorsuppressive microRNA133a in head and neck squamous cell carcinoma[J]. Int J Oncol, 2012, 40(6): 1770-1778. [27] Suzuki S, Yokobori T, Tanaka N, et al. CD47 expression regulated by the miR133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma[J]. Oncol Rep, 2012, 28(2): 465-472. [28] Yamamoto H, Kohashi K, Fujita A, et al. Fascin1 overexpression and miR133b downregulation in the progression of gastrointestinal stromal tumor[J]. Mod Pathol, 2013, 26(4): 563-571. [29] Gan Y, Shi C, Inge L, et al. Differential roles of ERK and Akt pathways in regulation of EGFRmediated signaling and motility in prostate cancer cells[J]. Oncogene, 2010, 29(35): 4947-4958. [30] PljesaErcegovac M, SavicRadojevic A, Dragicevic D, et al. Enhanced GSTP1 expression in transitional cell carcinoma of urinary bladder is associated with altered apoptotic pathways[J]. Urol Oncol, 2011, 29(1): 70-77. [31] Xie JJ, Xu LY, Zhang HH, et al. Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells[J]. Biochem Biophys Res Commun, 2005, 337(1): 355-362. [32] Vignjevic D, Schoumacher M, Gavert N, et al. Fascin, a novel target of betacateninTCF signaling, is expressed at the invasive front of human colon cancer[J]. Cancer Res, 2007, 67(14): 6844-6853. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||