国际肿瘤学杂志››2016,Vol. 43››Issue (11): 835-837.doi:10.3760/cma.j.issn.1673-422X.2016.11.008
彭文苗,秦传蓉,张志敏,胡萌,饶智国
收稿日期:
2016-05-13出版日期:
2016-11-08发布日期:
2016-11-02通讯作者:
饶智国,Email: raozhiguo@hotmail.com E-mail:raozhiguo@hotmail.com基金资助:
湖北省自然科学基金(2014CFC1049)
Peng Wenmiao, Qin Chuanrong, Zhang Zhimin, Hu Meng, Rao Zhiguo
Received:
2016-05-13Online:
2016-11-08Published:
2016-11-02Contact:
Rao Zhiguo E-mail:raozhiguo@hotmail.comSupported by:
Natural Science Foundation of Hubei Province of China (2014CFC1049)
摘要:核糖体蛋白L23是肿瘤基因治疗的新靶点,其通过调控p53激活、灭活鼠双微体2、间接影响cMyc致癌活性、参与肿瘤多药耐药、影响肿瘤生物学行为等方式参与肿瘤进程,是影响肿瘤患者临床预后的潜在因素。
彭文苗,秦传蓉,张志敏,胡萌,饶智国. 核糖体蛋白L23参与肿瘤进程的研究[J]. 国际肿瘤学杂志, 2016, 43(11): 835-837.
Peng Wenmiao, Qin Chuanrong, Zhang Zhimin, Hu Meng, Rao Zhiguo. Research of ribomomal protein L23 in tumor progression[J]. Journal of International Oncology, 2016, 43(11): 835-837.
[1] Klinge S, VoigtsHoffmann F, Leibundgut MA. Atomic structures of the eukaryotic ribosome[J]. Trends Biochem Sci, 2012, 37(5): 189-198. DOI: 10.1016/j.tibs.2012.02.007. [2] Zhou X, Liao WJ, Liao JM, et al. Ribosomal proteins: functions beyond the ribosome[J]. J Mol Cell Biol, 2015, 7(2): 92-104. DOI: 10.1093/jmcb/mjv014. [3] Vijayakumaran R, Tan KH, Miranda PJ, et al. Regulation of mutant p53 protein expression[J]. Front Oncol, 2015, 5: 284. DOI: 10.3389/fonc, 2015, 5(12): 00284. [4] KarniSchmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer[J]. Annu Rev Pathol, 2016, 11(5): 617-644. DOI: 0.1146/annurevpathol012414040349. [5] Yu Q, Li Y, Mu K, et al. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations[J]. Diagn Pathol, 2014, 9(1): 1-8. DOI: 10.1186/17461596971. [6] Michalk M, Meinrath J, Künstlinger H, et al. MDM2 gene amplification in esophageal carcinoma[J]. Oncol Rep, 2016, 35(4): 2223-2227. DOI: 10.3892/or.2016.4578. [7] Javid J, Mir R, Julka PK, et al. Association of p53 and mdm2 in the development and progression of non-small cell lung cancer[J]. Tumour Biol, 2015, 36(7): 5425-5432. DOI: 10.1007/s13277-015-3208-6. [8] Zhuo X, Ye H, Li Q, et al. Is mdm2 SNP309 variation a risk factor for head and neck carcinoma?: An updated meta-analysis based on 11 552 individuals[J]. Medicine, 2016, 95(9): e2948. DOI: 10.1097/MD.0000000000002948. [9] Burgess A, Chia K M, Haupt S, et al. Clinical overview of MDM2/Xtargeted therapies[J]. Front Oncol, 2016, 6: 7. DOI: 10.3389/fonc.2016.00007. [10] Liu Y, Deisenroth C, Zhang Y. RPMDM2p53 pathway: linking ribosomal biogenesis and tumor surveillance[J]. Trends in Cancer, 2016, 2(4): 191204. DOI: 10.1016/j.trecan.2016.03.002. [11] Zhang YF, Zhang BC, Zhang AR, et al. Cotransduction of ribosomal protein L23 enhances the therapeutic efficacy of adenoviralmediated p53 gene transfer in human gastric cancer[J]. Oncol Rep, 2013, 30(4): 1989-1995. DOI: 10.3892/or.2013.2663. [12] Fang HH, Kang JB, Du R, et al. Growth inhibitory effect of adenovirusmediated tissuetargeted expression of ribosomal protein L23 on human colorectal carcinoma cells[J]. Oncol Rep, 2015, 34(2): 763770. DOI: 10.3892/or.2015.4026. [13] Burgess A, Chia KM, Haupt S, et al. Clinical overview of MDM2/Xtargeted therapies[J]. Front Oncol, 2015, 6: 7. DOI: 10.3389/fonc.2016.00007. [14] Jung JH, Liao JM, Zhang Q, et al. Inauhzin3(c) inactivates cMyc independently of p53[J]. Cancer Biol Ther, 2015, 16(3): 412-419. DOI: 10.1080/15384047.2014.1002698. [15] Bretones G, Delgado MD, León J. Myc and cell cycle control[J]. Biochim Biophys Acta, 2015, 1849(5): 506-516. DOI: 10.1016/j.bbagrm.2014.03.013. [16] Sodir NM, Lamorna BS, Karnezis AN, et al. Endogenous Myc maintains the tumor microenvironment[J]. Genes Dev, 2011, 25(9): 907-916. DOI: 10.1101/gad.2038411. [17] Van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis[J]. Nat Rev Cancer, 2010, 10(4): 301-309. DOI: 10.1038/nrc2819. [18] Zhou X, Hao Q, Liao JM, et al. Ribosomal protein S14 negatively regulates cMyc activity[J]. J Biol Chem, 2013, 288(30): 21793-21801. DOI: 10.1074/jbc.M112.445122. [19] Liao JM, Zhou X, Gatignol A, et al. Ribosomal proteins L5 and L11 cooperatively inactivate cMyc via RNAinduced silencing complex[J]. Oncogene, 2014, 33(41): 4916-4923. DOI: 10.1038/onc.2013.430. [20] Wanzel M, Russ AC, KleineKohlbrecher DA, et al. A ribosomal protein L23nucleophosmin circuit coordinates Miz1 function with cell growth[J]. Nat Cell Biol, 2008, 10(9): 1051-1061. DOI: 10.1038/ncb1764. [21] Vo BT, Wolf E, Kawauchi D, et al. The interaction of Myc with Miz1 defines medulloblastoma subgroup identity[J]. Cancer Cell, 2016, 29(1): 5-16. DOI: 10.1016/j.ccell.2015.12.003. [22] Shi Y, Zhai H, Wang X, Han Z, et al. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing druginduced apoptosis[J]. Exp Cell Res, 2004, 296(2): 337-346. DOI: 10.1016/j.yexcr.2004.02.009. [23] 于海燕, 张志勇, 王凯, 等. 下调RPL23对胃癌耐药细胞SGC7901/ADR药物敏感性的影响[J]. 现代肿瘤医学, 2015, 23(10): 1340-1343. [24] 吴静, 杨睿, 刘树业. 肿瘤多药耐药的产生机制及逆转策略[J]. 国际肿瘤学杂志, 2013, 40(12): 889-892. DOI: 10.3760/cma.j.issn.1673-422X.2013.12.003. [25] Salehan MR, Morse HR. DNA damage repair and tolerance: a role in chemotherapeutic drug resistance[J]. Br J Biomed Sci, 2013, 70(1): 31-40. [26] Wu L, Li X, Xu F, et al. Overexpression of RPL23 in myelodysplastic syndromes is associated with apoptosis resistance of CD34+ cells and predicts poor prognosis and distinct response to CHG chemotherapy or decitabine[J]. Ann Hematol, 2012, 91(10): 1547-1554. DOI: 10.1007/s00277-012-1486-2. [27] de Las HerasRubio A, Perucho L, Paciucci R, et al. Ribosomal proteins as novel players in tumorigenesis[J]. Cancer Metastasis Rev, 2014, 33(1): 115-141. DOI: 10.1007/s10555-013-9460-6. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||