国际肿瘤学杂志››2017,Vol. 44››Issue (4): 281-283.doi:10.3760/cma.j.issn.1673-422X.2017.04.010
贺艳,帖君,唐郡
出版日期:
2017-04-08发布日期:
2017-05-09通讯作者:
唐郡 E-mail:tangjun1974@163.comHe Yan, Tie Jun, Tang Jun
Online:
2017-04-08Published:
2017-05-09Contact:
Tang Jun E-mail:tangjun1974@163.com摘要:小眼畸形相关转录因子(MITF)一直是近几年黑色素瘤细胞研究中的热点。异常表达的MITF与黑色素瘤的发生和转移密切相关,且MITF低表达能促进黑色素瘤细胞的侵袭。研究MITF及与其相关的分子和信号通路的调节关系,将进一步加深对恶性黑色素瘤转移分子机制的理解,为开发新的分子靶向药物提供帮助。
贺艳,帖君,唐郡. 小眼畸形相关转录因子在黑色素瘤转移中的作用[J]. 国际肿瘤学杂志, 2017, 44(4): 281-283.
He Yan, Tie Jun, Tang Jun. Role of microphthalmia-associated transcription factor in melanoma metastasis[J]. Journal of International Oncology, 2017, 44(4): 281-283.
[1] Cheli Y, Giuliano S, Fenouille N, et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells[J]. Oncogene, 2012, 31(19): 2461-2470. DOI: 10.1038/onc.2011.425. [2] Widmer DS, Cheng PF, Eichhoff OM, et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping[J]. Pigment Cell Melanoma Res, 2012, 25(3): 343-353. DOI: 10.1111/j.1755-148X.2012.00986.x. [3] Wang C, Zhao L, Su Q, et al. Phosphorylation of MITF by AKT affects its downstream targets and causes TP53-dependent cell senescence[J]. Int J Biochem Cell Biol, 2016, 80: 132-142. DOI: 10.1016/j.biocel.2016.09.029. [4] Haq R, Yokoyama S, Hawryluk EB, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition[J]. Proc Natl Acad Sci USA, 2013, 110(11): 4321-4326. DOI: 10.1073/pnas.1205575110. [5] Pan L, Ma X, Wen B, et al. Microphthalmia-associated transcription factor/T-box factor-2 axis acts through Cyclin D1 to regulate melanocyte proliferation[J]. Cell Prolif, 2015, 48(6): 631-642. DOI: 10.1111/cpr.12227. [6] Margue C, Philippidou D, Reinsbach SE, et al. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion[J]. PLoS One, 2013, 8(9): e73473. DOI: 10.1371/journal.pone.0073473. [7] Golan T, Messer AR, AmitaiLange A, et al. Interactions of melanoma cells with distal keratinocytes trigger metastasis via Notch signaling inhibition of MITF[J]. Mol Cell, 2015, 59(4): 664-676. DOI: 10.1016/j.molcel.2015.06.028. [8] Yan D, Dong XD, Chen X, et al. Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2[J]. PLoS One, 2012, 7(7): e40967. DOI: 10.1371/journal.pone.0040967. [9] Mazar J, DeYoung K, Khaitan D, et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness[J]. PLoS One, 2010, 5(11): e13779. DOI: 10.1371/journal.pone.0013779. [10] Luo C, Merz PR, Chen Y, et al. MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2[J]. Cancer Lett, 2013, 341(2): 240-247. DOI: 10.1016/j.canlet.2013.08.021. [11] Goswami S, Tarapore RS, Teslaa JJ, et al. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinantbinding protein[J]. J Biol Chem, 2010, 285(27): 20532-20540. DOI: 10.1074/jbc.M110.109298. [12] Gallagher SJ, Rambow F, Kumasaka M, et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis[J]. Oncogene, 2013, 32(17): 22302238. DOI: 10.1038/onc.2012.229. [13] Kaur A, Webster MR, Marchbank K, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance[J]. Nature, 2016, 532(7598): 250-254. DOI: 10.1038/nature17392. [14] Seong I, Min HJ, Lee JH, et al. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes[J]. PLoS One, 2012, 7(2): e31477. DOI: 10.1371/journal.pone.0031477. [15] Dadras SS, Lin RJ, Razavi G, et al. A novel role for microphthalmia-associated transcription factore-regulated pigment epithelium-derived factor during melanoma progression[J]. Am J Pathol, 2015, 185(1): 252-265. DOI: 10.1016/j.ajpath.2014.09.012. [16] Nicholas C, Yang J, Peters SB, et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1.)[J]. PLoS One, 2013, 8(9): e74710. DOI: 10.1371/journal.pone.0074710. [17] Pierrat MJ, Marsaud V, Mauviel A, et al. Expression of microphthalmiaassociated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factorβ[J]. J Biol Chem, 2012, 287(22): 17996-18004. DOI: 10.1074/jbc.M112.358341. [18] Porcelli L, Guida G, Quatrale AE, et al. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy[J]. J Transl Med, 2015, 13: 26. DOI: 10.1186/s12967-015-0385-4. [19] Khoja L, Shenjere P, Hodgson C, et al. Prevalence and heteroge-neity of circulating tumour cells in metastatic cutaneous melanoma[J]. Melanoma Res, 2014, 24(1): 40-46. DOI: 10.1097/CMR.0000000000000025. [20] WardwellOzgo J, Dogruluk T, Gifford A, et al. HOXA1 drives me-lanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome[J]. Oncogene, 2014, 33(8): 1017-1026. DOI: 10.1038/onc.2013.30. [21] Naffouje S, Naffouje R, Bhagwandin S, et al. Microphthalmia transcription factor in malignant melanoma predicts occult sentinel lymph node metastases and survival[J]. Melanoma Res, 2015, 25(6): 496-502. DOI: 10.1097/CMR.0000000000000195. [22] Xia J, Wang Y, Li F, et al. Expression of microphthalmia transcription factor, S100 protein, and HMB-45 in malignant melanoma and pigmented nevi[J]. Biomed Rep, 2016, 5(3): 327-331. DOI: 10.3892/br.2016.732. [23] Guo R, Franco-Palacios M, Russell M, et al. Micropthalmia transcription factor (MITF) as a diagnostic marker for metastatic melanomas negative for other melanoma markers[J]. Int J Clin Exp Pathol, 2013, 6(8): 1658-1664. [24] Stemig M, Astelford K, Emery A, et al. Deletion of histone deacetylase 7 in osteoclasts decreases bone mass in mice by interactions with MITF[J]. PLoS One, 2015, 10(4): e0123843. DOI: 10.1371/journal.pone.0123843. [25] Qi X, Hong J, Chaves L, et al. Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates[J]. Immunity, 2013, 39(1): 97-110. DOI: 10.1016/j.immuni.2013.06.012. [26] Guo J, Zhang JF, Wang WM, et al. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression[J]. RNA Biol, 2014, 11(6): 732-741. |
[1] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵.寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[3] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[4] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英.免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[5] | 吴旻杭, 孙文政, 于庆卓, 郭蓉, 叶辉, 杜莹, 邱晋, 安华章, 曹莉莉.RNF43通过β-catenin抑制黑色素瘤细胞PD-L1表达并促进CD8+T细胞介导的抗肿瘤免疫反应[J]. 国际肿瘤学杂志, 2023, 50(7): 407-412. |
[6] | 杨丽蓉, 王羽丰.预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[7] | 李雄安, 颜艳艳.丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[8] | 马培晗, 张灵敏, 路宁, 张明鑫.麻醉对肝细胞癌复发转移的影响[J]. 国际肿瘤学杂志, 2023, 50(2): 117-121. |
[9] | 吕璐, 孙鹏飞, 崔腾璐.子宫内膜癌颈部淋巴结转移综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(11): 701-704. |
[10] | 赵建昊, 段衍超.多发性骨髓瘤髓外病变发病机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 55-59. |
[11] | 张露, 周菊英, 马辰莺, 林州.复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. |
[12] | 彭琛, 谢印通, 张昕, 谢鹏.宫颈癌维持治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(7): 430-435. |
[13] | 张绍鹏, 孔远, 潘国强, 朱丽, 王大广.全身化疗联合腹腔热灌注治疗胃癌1例[J]. 国际肿瘤学杂志, 2022, 49(5): 316-318. |
[14] | 洪安澜, 曹蒙, 王焱, 方方.长非编码RNA作为竞争性内源RNA在黑色素瘤中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(1): 61-64. |
[15] | 王斌, 周江云, 刘曦.不同放疗方案治疗晚期食管鳞状细胞癌的临床价值评析[J]. 国际肿瘤学杂志, 2021, 48(8): 484-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||