国际肿瘤学杂志››2017,Vol. 44››Issue (11): 834-837.doi:10.3760/cma.j.issn.1673-422X.2017.11.007
陈邓林,陈俊民
收稿日期:
2017-08-07出版日期:
2017-11-08发布日期:
2017-11-24通讯作者:
陈邓林 E-mail:cdlnoodle@126.comChen Denglin, Chen Junmin
Received:
2017-08-07Online:
2017-11-08Published:
2017-11-24Contact:
Chen Denglin E-mail:cdlnoodle@126.com摘要:6-磺基N-乙酰乳糖胺树突状细胞(slanDC)是一类新发现的外周血树突状细胞(DC)亚群,其特征性表达经典DC缺乏的Fc受体,既往对该亚群的研究集中于炎症及自身免疫性疾病,最近研究发现slanDC可通过抗体依赖细胞介导的细胞毒性作用、释放相关细胞因子、与间充质干细胞或自然杀伤细胞交互作用,以及激活Toll样受体通路、丝裂原活化蛋白激酶通路等途径产生抗肿瘤效应,可能成为一种理想的抗肿瘤治疗工具。
陈邓林,陈俊民. 6-磺基N-乙酰乳糖胺树突状细胞与肿瘤[J]. 国际肿瘤学杂志, 2017, 44(11): 834-837.
陈邓林,陈俊民. 6-sulfo-LacNAc dendritic cells and tumors[J]. Journal of International Oncology, 2017, 44(11): 834-837.
[1] Bol KF, Schreibelt G, Gerritsen WR, et al. Dendritic cellbased immunotherapy: state of the art and beyond[J]. Clin Cancer Res, 2016, 22(8): 1897-1906. DOI: 10.1158/10780432.CCR151399. [2] Anguille S, Smits EL, Lion E, et al. Clinical use of dendritic cells for cancer therapy[J]. Lancet Oncol, 2014, 15(7): e257-e267. DOI: 10.1016/S1470-2045(13)70585-0. [3] Schkel K, Mayer E, Federle C, et al. A novel dendritic cell population in human blood: onestep immunomagnetic isolation by a specific mAb (MDC8) and in vitro priming of cytotoxic T lymphocytes[J]. Eur J Immunol, 1998, 28(12): 40844093. DOI: 10.1002/(SICI)15214141(199812)28:12&60;4084::AIDIMMU4084&62;3.0.CO;2-4. [4] De Baey A, Mende I, Riethmueller G, et al. Phenotype and function of human dendritic cells derived from MDC8(+) monocytes[J]. Eur J Immunol, 2001, 31(6): 1646-1655. DOI: 10.1002/15214141(200106)31:6&60;1646::AIDIMMU1646&62;3.0.CO;2X. [5] Schkel K, Kannagi R, Kniep B, et al. 6Sulfo LacNAc, a novel carbohydrate modification of PSGL1, defines an inflammatory type of human dendritic cells[J]. Immunity, 2002, 17(3): 289-301. [6] Schkel K, Von Kietzell M, Hnsel A, et al. Human 6sulfo LacNAcexpressing dendritic cells are principal producers of early interleukin12 and are controlled by erythrocytes[J]. Immunity, 2006, 24(6): 767-777. DOI: 10.1016/j.immuni.2006.03.020. [7] van LeeuwenKerkhoff N, Lundberg K, Westers TM, et al. Transcriptional profiling reveals functional dichotomy between human slan+ nonclassical monocytes and myeloid dendritic cells[J]. J Leukoc Biol, 2017, 102(4): 10551068. DOI: 10.1189/jlb.3MA0117037R. [8] Doebel T, Kunze A, Babatz J, et al. FcγRⅢ (CD16) equips immature 6-sulfo-LacNAcexpressing dendritic cells (slanDCs) with a unique capacity to handle IgGcomplexed antigens[J]. Blood, 2013, 121(18): 36093618. DOI: 10.1182/blood201208447045. [9] Wang S, Jia M. Antibody therapies in cancer[J]. Adv Exp Med Biol, 2016, 909: 1-67. DOI: 10.1007/978-94-017-7555-7_1. [10] Schmitz M, Zhao S, Schkel K, et al. Native human blood dendritic cells as potent effectors in antibodydependent cellular cytotoxicity[J]. Blood, 2002, 100(4): 1502-1504. [11] Tufa DM, Chatterjee D, Low HZ, et al. TNFR2 and IL12 coactivation enables slanDCs to support NKcell function via membranebound TNFα[J]. Eur J Immunol, 2014, 44(12): 37173728. DOI: 10.1002/eji.201444676. [12] Wehner R, Lbel B, Bornhuser M, et al. Reciprocal activating interaction between 6sulfo LacNAc+ dendritic cells and NK cells[J]. Int J Cancer, 2009, 124(2): 358366. DOI: 10.1002/ijc.23962. [13] Tufa DM, Ahmad F, Chatterjee D, et al. IL1β limits the extent of human 6sulfo LacNAc dendritic cell (slanDC)mediated NK cell activation and regulates CD95induced apoptosis[J]. Cell Mol Immunol, 2016, In press. DOI: 10.1038/cmi.2016.17. [14] Osada T, Nagawa H, Kitayama J, et al. Peripheral blood dendritic cells, but not monocytederived dendritic cells,can augment human NK cell function[J]. Cell Immunol, 2001, 213(1): 1423. DOI: 10.1006/cimm.2001.1858. [15] Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12mediated tumor suppression[J]. Cell Death Differ, 2015, 22(2): 237-246. DOI: 10.1038/cdd.2014.134. [16] Yue T, Zheng X, Dou Y, et al. Interleukin 12 shows a better curative effect on lung cancer than paclitaxel and cisplatin doublet chemotherapy[J]. BMC Cancer, 2016, 16: 665. DOI: 10.1186/s12885-016-2701-7. [17] Liu D, Wang X, Chen Z. Tumor necrosis factorα, a regulator and therapeutic agent on breast cancer[J]. Curr Pharm Biotechnol, 2016, 17(6): 486-494. [18] Grimmig T, Matthes N, Hoeland K, et al. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer[J]. Int J Oncol, 2015, 47(3): 857866. DOI: 10.3892/ijo.2015.3069. [19] Park AJ, Paul J, Chapman MS, et al. Longterm outcomes of melanoma in situ treated with topical 5% imiquimod cream: a retrospective review[J]. Dermatol Surg, 2017, 43(8): 10171022. DOI: 10.1097/DSS.0000000000001115. [20] Roozeboom MH, Nelemans PJ, Mosterd K, et al. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: a subgroup analysis within a noninferiority randomized controlled trial[J]. Br J Dermatol, 2015, 172(3): 739745. DOI: 10.1111/bjd.13299. [21] Jhnisch H, Wehner R, Tunger A, et al. TLR7/8 agonists trigger immunostimulatory properties of human 6sulfo LacNAc dendritic cells[J]. Cancer Lett, 2013, 335(1): 119-127. DOI: 10.1016/j.canlet.2013.02.003. [22] Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression[J]. Mol Cancer, 2017, 16(1): 31. DOI: 10.1186/s12943-017-0597-8. [23] Wehner R, Wehrum D, Bornhuser M, et al. Mesenchymal stem cells efficiently inhibit the proinflammatory properties of 6-sulfo-LacNAc dendritic cells[J]. Haematologica, 2009, 94(8): 11511156. DOI: 10.3324/haematol.2008.001735. [24] Burotto M, Chiou VL, Lee JM, et al. The MAPK pathway across different malignancies: a new perspective[J]. Cancer, 2014, 120(22): 3446-3456. DOI: 10.1002/cncr.28864. [25] Grossi V, Peserico A, Tezil T, et al. p38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance[J]. World J Gastroenterol, 2014, 20(29): 9744-9758. DOI: 10.3748/wjg.v20.i29.9744. [26] Tan W, Yu HG, Luo HS. Inhibition of the p38 MAPK pathway sensitizes human gastric cells to doxorubicin treatment in vitro and in vivo[J]. Mol Med Rep, 2014, 10(6): 3275-3281. DOI: 10.3892/mmr.2014.2598. [27] Patnaik A, Haluska P, Tolcher AW, et al. A firstinhuman phase Ⅰ study of the oral p38 MAPK inhibitor, ralimetinib (LY2228820 dimesylate), in patients with advanced cancer[J]. Clin Cancer Res, 2016, 22(5): 10951102. DOI: 10.1158/10780432.CCR151718. [28] Langosch S, Wehner R, Malecka A, et al. Impact of p38 mitogenactivated protein kinase inhibition on immunostimulatory properties of human 6sulfo LacNAc dendritic cells[J]. Immunobiology, 2016, 221(2): 166174. DOI: 10.1016/j.imbio.2015.09.012. [29] Fournier C, Rivera Vargas T, Martin T, et al. Immunotherapeutic properties of chemotherapy[J]. Curr Opin Pharmacol, 2017, In press. DOI: 10.1016/j.coph.2017.05.003. [30] Wehner R, Bitterlich A, Meyer N, et al. Impact of chemotherapeutic agents on the immunostimulatory properties of human 6sulfo LacNAc+ (slan) dendritic cells[J]. Int J Cancer, 2013, 132(6): 13511359. DOI: 10.1002/ijc.27786. [31] Luen SJ, Salgado R, Fox S, et al. Tumourinfiltrating lymphocytes in advanced HER2positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the Cleopatra study[J]. Lancet Oncol, 2017, 18(1): 5262. DOI: 10.1016/S14702045(16)306313. [32] Ooft ML, Van Ipenburg JA, Braunius WW, et al. Prognostic role of tumor infiltrating lymphocytes in EBV positive and EBV negative nasopharyngeal carcinoma[J]. Oral Oncol, 2017, 71: 16-25. DOI: 10.1016/j.oraloncology.2017.05.015. [33] Toma M, Wehner R, Kloβ A, et al. Accumulation of tolerogenic human 6sulfo LacNAc dendritic cells in renal cell carcinoma is associated with poor prognosis[J]. Oncoimmunology, 2015, 4(6): e1008342. DOI: 10.1080/2162402X.2015.1008342. [34] Vermi W, Micheletti A, Lonardi S, et al. slanDCs selectively accumulate in carcinomadraining lymph nodes and marginate metastatic cells[J]. Nat Commun, 2014, 5: 3029. DOI: 10.1038/ncomms4029. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||