国际肿瘤学杂志››2019,Vol. 46››Issue (5): 281-284.doi:10.3760/cma.j.issn.1673-422X.2019.05.006
胡梦雪1,许斌1,于金明1,2,宋启斌1
收稿日期:
2019-02-27出版日期:
2019-05-08发布日期:
2019-06-14通讯作者:
于金明,Email: sdyujinming@126.com;宋启斌,Email: qibinsong@163.com E-mail:于金明,Email: sdyujinming@126.com;宋启斌,Email: qibinsong@163.comHu Mengxue1, Xu Bin1, Yu Jinming1,2, Song Qibin1
Received:
2019-02-27Online:
2019-05-08Published:
2019-06-14Contact:
Yu Jinming, Song Qibin E-mail:于金明,Email: sdyujinming@126.com;宋启斌,Email: qibinsong@163.com摘要:随着程序性死亡蛋白-1(PD-1)及程序性死亡蛋白配体-1(PD-L1)抑制剂的发展,第二代联合免疫抑制剂应运而生。作为一种PD-L1/转化生长因子-β(TGF-β)双功能融合蛋白,M7824可在拮抗PD-L1通路的同时捕获TGF-β,有效增强免疫应答,减少免疫逃逸及耐药性的发生。该药物在多个临床前研究中取得显著疗效,然而其适应证、安全性、有效性仍需大型临床研究数据证实。
胡梦雪,许斌,于金明,宋启斌. PD-L1/TGF-β双功能抑制剂融合蛋白M7824研究进展[J]. 国际肿瘤学杂志, 2019, 46(5): 281-284.
Hu Mengxue, Xu Bin, Yu Jinming, Song Qibin. Advances of bifunctional anti-PD-L1/TGF-β fusion protein M7824[J]. Journal of International Oncology, 2019, 46(5): 281-284.
[1] Guo L, Zhang Y, Zhang L, et al. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer[J]. Tumour Biol, 2016, 37(1): 115-125. DOI: 10.1007/s13277-015-4374-2. [2] Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease[J]. Nat Rev Drug Discov, 2012, 11(10): 790-811. DOI: 10.1038/nrd3810. [3] Ravi R, Noonan KA, Pham V, et al. Bifunctional immune checkpointtargeted antibodyligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy[J]. Nat Commun, 2018, 9(1): 741. DOI: 10.1038/s41467-017-02696-6. [4] Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumourassociated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. DOI: 10.1038/nature22396. [5] Moustakas A, Heldin CH. Mechanisms of TGFβ-induced epithelialmesenchymal transition[J]. J Clin Med, 2016, 5(7). pii: E63. DOI: 10.3390/jcm5070063. [6] Bai WD, Ye XM, Zhang MY, et al. MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer[J]. Int J Cancer, 2014, 135(6): 1356-1368. DOI: 10.1002/ijc.28782. [7] Lin RL, Zhao LJ. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer[J]. Cancer Biol Med, 2015, 12(4): 385-393. DOI: 10.7497/j.issn.20953941.2015.0015. [8] Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. DOI: 10.1038/nature25501. [9] Duan J, Liu X, Chen H, et al. Impact of PDL1, transforming growth factorβ expression and tumor-infiltrating CD8+T cells on clinical outcome of patients with advanced thymic epithelial tumors[J]. Thorac Cancer, 2018, 9(11): 1341-1353. DOI: 10.1111/1759-7714.12826. [10] Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity[J]. Immunol Rev, 2010, 236: 219-242. DOI: 10.1111/j.1600-065x.2010.00923.x. [11] Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells[J]. J Exp Med, 2009, 206(13): 3015-3029. DOI: 10.1084/jem.20090847. [12] Morikawa M, Derynck R, Miyazono K. TGFβ and the TGFβ family: contextdependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5). pii: a021873. DOI: 10.1101/cshperspect.a021873. [13] Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β[J]. Sci Transl Med, 2018, 10(424). pii: eaan5488. DOI: 10.1126/scitranslmed.aan5488. [14] Knudson KM, Hicks KC, Luo X, et al. M7824, a novel bifunctional antiPD-L1/TGFβ Trap fusion protein, promotes antitumor efficacy as monotherapy and in combination with vaccine[J]. OncoImmunology, 2018, 7(5): e1426519. DOI: 10.1080/2162402X.2018.1426519. [15] Jochems C, Tritsch SR, Pellom ST, et al. Analyses of functions of an antiPD-L1/TGFβR2 bispecific fusion protein (M7824)[J]. Oncotarget, 2017, 8(43): 75217-75231. DOI: 10.18632/oncotarget.20680. [16] Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors[J]. Clin Cancer Res, 2018, 24(6): 1287-1295. DOI: 10.1158/1078-0432.CCR-17-2653. [17] Dovedi SJ, Adlard AL, LipowskaBhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade[J]. Cancer Res, 2014, 74(19): 5458-5468. DOI: 10.1158/0008-5472.CAN-14-1258. [18] Grenga I, Donahue RN, Gargulak ML, et al. AntiPDL1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immunemediated recognition and lysis[J]. Urol Oncol, 2018, 36(3): 93. e1-e93. e11. DOI: 10.1016/j.urolonc.2017.09.027. [19] David JM, Dominguez C, McCampbell KK, et al. A novel bifunctional antiPD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells[J]. Oncoimmunology, 2017, 6(10): e1349589. DOI: 10.1080/2162402X.2017.1349589. [20] Liu L, Liu X, Ren X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification[J]. Sci Rep, 2016, 6: 21602. DOI: 10.1038/srep21602. [21] Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as firstline treatment in cisplatinineligible patients with locally advanced and metastatic urothelial carcinoma: a singlearm, multicentre, phase 2 trial[J]. Lancet, 2017, 389(10064): 67-76. DOI: 10.1016/S0140-6736(16)32455-2. [22] Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinumtreated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, openlabel, phase 3 randomised controlled trial[J]. Lancet, 2018, 391(10122): 748-757. DOI: 10.1016/S0140-6736(17)33297-X. [23] Terabe M, Robertson FC, Clark K, et al. Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy[J]. Oncoimmunology, 2017, 6(5): e1308616. DOI: 10.1080/2162402X.2017.1308616. [24] Park BV, Freeman ZT, Ghasemzadeh A, et al. TGF-β1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer[J]. Cancer Discov, 2016, 6(12): 1366-1381. DOI: 10.1158/2159-8290.CD-15-1347. [25] Luis G, Tae K, David VB, et al. Results from a secondline (2L) NSCLC cohort treated with M7824 (MSB0011359C), a bifunctiona fusion protein targeting TGF-β and PD-L1[J]. J Clin Oncol, 2018, 36 (15_Suppl): 9017. DOI: 10.1200/JCO.2018.36.15_suppl.9017. [26] Julius S, Margaret GM, Jason R, et al. Safety and activity of M7824, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with HPV associated cancers[J]. J Clin Oncol, 2018, 36 (15_Suppl): 3007. DOI: 10.1200/JCO.2018.36.15_suppl.3007. [27] Yoo C, oh DY, Choi HJ, et al. AB053. P-21. M7824 (MSB0011359C), a bifunctional fusion protein targeting transforming growth factor β (TGF-β) and PD-L1, in Asian patients with pretreated biliary tract cancer (BTC): efficacy by BTC subtype[J]. ESMO, 2019, In press. DOI: 10.21037/hbsn.2019.AB053. |
[1] | 王悦, 呼群, 侯英伟.表观遗传修饰对肿瘤PD-L1表达调控的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 345-348. |
[2] | 宁婷婷, 胡钦勇.二甲双胍在肿瘤免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(5): 292-295. |
[3] | 丁心静, 丁江华.皮肤免疫相关不良事件与PD-1/PD-L1抑制剂临床疗效相关性的研究进展[J]. 国际肿瘤学杂志, 2022, 49(4): 225-228. |
[4] | 谢红霞, 左金辉, 廖冬颖, 邓仁芬, 姚杨, 贾英杰, 李小江, 孔凡铭.PD-L1抑制剂在非小细胞肺癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(2): 111-115. |
[5] | 李宁, 张玢琪.免疫检查点抑制剂在子宫内膜癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(2): 125-128. |
[6] | 欧惠仪, 王越, 彭承宏.PD-L1与Treg在肿瘤免疫及治疗中的相关性[J]. 国际肿瘤学杂志, 2021, 48(6): 350-353. |
[7] | 丁艳, 汪红艳.PD-1/PD-L1抑制剂在食管鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2021, 48(2): 113-116. |
[8] | 赵丽丽, 赵文文, 冯青青, 赵文飞, 张雪, 井文君, 魏红梅.沉默PD-L1表达对胃癌细胞生物学行为的影响[J]. 国际肿瘤学杂志, 2021, 48(12): 705-710. |
[9] | 曹纯, 何文琪, 晏军.免疫检查点抑制剂在小细胞肺癌治疗中的应用[J]. 国际肿瘤学杂志, 2021, 48(12): 747-750. |
[10] | 薛晨, 赵月, 石光, 唐艳.PD-1/PD-L1抑制剂在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2020, 47(5): 312-315. |
[11] | 徐阳涛, 陈彪, 何晓琴, 徐细明.免疫治疗超进展的研究进展[J]. 国际肿瘤学杂志, 2020, 47(12): 737-740. |
[12] | 宋博, 邬明歆, 贾英杰, 李小江.PD-1/PD-L1抑制剂引起免疫相关性肺炎的研究进展[J]. 国际肿瘤学杂志, 2020, 47(10): 627-629. |
[13] | 张李卓, 钱杨洋, 郑国湾, 葛明华.PD-1/PD-L1在肿瘤中的机制研究及其在甲状腺癌中的诊治价值[J]. 国际肿瘤学杂志, 2020, 47(1): 39-42. |
[14] | 白馨雅, 张金梦, 孙洋, 安永恒.免疫检查点抑制剂在晚期非小细胞肺癌综合治疗中的应用[J]. 国际肿瘤学杂志, 2019, 46(8): 500-504. |
[15] | 胡耿维1, 张莹2, 吴志浩3.免疫检测点PD-1/PD-L1的机制研究及免疫治疗[J]. 国际肿瘤学杂志, 2019, 46(2): 87-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||