国际肿瘤学杂志››2021,Vol. 48››Issue (6): 350-353.doi:10.3760/cma.j.cn371439-20200907-00066
欧惠仪, 王越, 彭承宏
收稿日期:
2020-09-07修回日期:
2020-09-24出版日期:
2021-06-08发布日期:
2021-06-24通讯作者:
彭承宏Ou Huiyi, Wang Yue, Peng Chenghong
Received:
2020-09-07Revised:
2020-09-24Online:
2021-06-08Published:
2021-06-24Contact:
Peng Chenghong摘要:
程序性死亡蛋白(PD-1)及其程序性死亡蛋白配体(PD-L1)是重要的共抑制分子,调节性T细胞(Treg)是重要的抑制性细胞,二者在肿瘤微环境中数量均增加,与肿瘤免疫逃逸及肿瘤发生发展密切相关。PD-L1对Treg的发育及功能有重要影响,抗PD-1/PD-L1抗体的应用可影响Treg的增殖和功能,进而介导耐药及超进展性疾病的发生。深入了解PD-L1与Treg在肿瘤免疫及免疫治疗中的作用及相关性,可为提高抗PD-1/PD-L1抗体疗效提供新的思路。
欧惠仪, 王越, 彭承宏. PD-L1与Treg在肿瘤免疫及治疗中的相关性[J]. 国际肿瘤学杂志, 2021, 48(6): 350-353.
Ou Huiyi, Wang Yue, Peng Chenghong. Correlation between PD-L1 and Tregs in tumor immunity and immunotherapy[J]. Journal of International Oncology, 2021, 48(6): 350-353.
[1] | Jiang Y, Zhao X, Fu J, et al. Progress and challenges in precise treatment of tumors with PD-1/PD-L1 blockade[J]. Front Immunol, 2020,11:339. DOI: 10.3389/fimmu.2020.00339. doi:10.3389/fimmu.2020.00339 |
[2] | Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019,18(1):10. DOI: 10.1186/s12943-018-0928-4. doi:10.1186/s12943-018-0928-4 |
[3] | Zhou AL, Wang X, Yu W, et al. Expression level of PD-L1 is involved in ALDH1A1-mediated poor prognosis in patients with head and neck squamous cell carcinoma[J]. Pathol Res Pract, 2020,216(9):153093. DOI: 10.1016/j.prp.2020.153093. doi:10.1016/j.prp.2020.153093 |
[4] | Hu ZQ, Xin HY, Luo CB, et al. Associations among the mutational landscape, immune microenvironment, and prognosis in Chinese patients with hepatocellular carcinoma[J]. Cancer Immunol Immuno-ther, 2021,70(2):377-389. DOI: 10.1007/s00262-020-02685-7. |
[5] | Sun C, Zhang L, Zhang W, et al. Expression of PD-1 and PD-L1 on tumor-infiltrating lymphocytes predicts prognosis in patients with small-cell lung cancer[J]. Onco Targets Ther, 2020,13:6475-6483. DOI: 10.2147/OTT.S252031. doi:10.2147/OTT.S252031 |
[6] | Kowanetz M, Zou W, Gettinger SN, et al. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1)[J]. Proc Natl Acad Sci U S A, 2018,115(43):E10119-E10126. DOI: 10.1073/pnas.1802166115. doi:10.1073/pnas.1802166115 |
[7] | Patsoukis N, Duke-Cohan JS, Chaudhri A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation[J]. Commun Biol, 2020,3(1):128. DOI: 10.1038/s42003-020-0845-0. doi:10.1038/s42003-020-0845-0pmid:32184441 |
[8] | Cai J, Wang D, Zhang G, et al. The role of PD-1/PD-L1 axis in Treg development and function: implications for cancer immunotherapy[J]. Onco Targets Ther, 2019,12:8437-8445. DOI: 10.2147/OTT.S221340. doi:10.2147/OTT |
[9] | Cui P, Jing P, Liu X, et al. Prognostic significance of PD-L1 expre-ssion and its tumor-intrinsic functions in hypopharyngeal squamous cell carcinoma[J]. Cancer Manag Res, 2020,12:5893-5902. DOI: 10.2147/CMAR.S257299. doi:10.2147/CMAR.S257299 |
[10] | Al Dulaijan BS, Mansouri A, Karnyski J, et al. Regulatory T cells: from the bench to the clinic and back[J]. Curr Opin Organ Transplant, 2018,23(1):1-7. DOI: 10.1097/MOT.0000000000000491. doi:10.1097/MOT.0000000000000491pmid:29210727 |
[11] | Zhang LN, Xin T, Chen M, et al. Chemoresistance in mesenchymal lung cancer cells is correlated to high regulatory T cell presence in the tumor microenvironment[J]. IUBMB Life, 2019,71(7):986-991. DOI: 10.1002/iub.2043. |
[12] | Kuehnemuth B, Piseddu I, Wiedemann GM, et al. CCL1 is a major regulatory T cell attracting factor in human breast cancer[J]. BMC Cancer, 2018,18(1):1278. DOI: 10.1186/s12885-018-5117-8. doi:10.1186/s12885-018-5117-8pmid:30572845 |
[13] | Syed Khaja AS, Toor SM, El Salhat H, et al. Intratumoral FOXP3+Helios+regulatory T cells upregulating immunosuppressive molecules are expanded in human colorectal cancer[J]. Front Immunol, 2017,8:619. DOI: 10.3389/fimmu.2017.00619. doi:10.3389/fimmu.2017.00619 |
[14] | Shang B, Liu Y, Jiang SJ, et al. Prognostic value of tumor-infiltrating FOXP3+regulatory T cells in cancers: a systematic review and meta-analysis[J]. Sci Rep, 2015,5:15179. DOI: 10.1038/srep15179. doi:10.1038/srep15179 |
[15] | Park HJ, Park JS, Jeong YH, et al. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+T cell immune response via the interaction with PD-L1 expressed on CD8+T cells[J]. J Immunol, 2015,194(12):5801-5811. DOI: 10.4049/jimmunol.1401936. doi:10.4049/jimmunol.1401936 |
[16] | Rueda CM, Jackson CM, Chougnet CA. Regulatory T-cell-mediated suppression of conventional T-cells and dendritic cells by different cAMP intracellular pathways[J]. Front Immunol, 2016,7:216. DOI: 10.3389/fimmu.2016.00216. |
[17] | Stathopoulou C, Gangaplara A, Mallett G, et al. PD-1 inhibitory receptor downregulates asparaginyl endopeptidase and maintains FOXP3 transcription factor stability in induced regulatory T cells[J]. Immunity, 2018, 49(2): 247-263.e7. DOI: 10.1016/j.immuni.2018.05.006. doi:S1074-7613(18)30242-5pmid:30054205 |
[18] | Lin CL, Huang HM, Hsieh CL, et al. Jagged1-expressing adenovirus-infected dendritic cells induce expansion of Foxp3+regulatory T cells and alleviate T helper type 2-mediated allergic asthma in mice[J]. Immunology, 2019,156(2):199-212. DOI: 10.1111/imm.13021. doi:10.1111/imm.2019.156.issue-2 |
[19] | Dong Y, Han Y, Huang Y, et al. PD-L1 is expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia[J]. Front Immunol, 2020,11:1710. DOI: 10.3389/fimmu.2020.01710. doi:10.3389/fimmu.2020.01710 |
[20] | Okamura T, Sumitomo S, Morita K, et al. TGF-β3-expressing CD4+CD25(-)LAG3+regulatory T cells control humoral immune responses[J]. Nat Commun, 2015,6:6329. DOI: 10.1038/ncomms7329. doi:10.1038/ncomms7329 |
[21] | Toor SM, Syed Khaja AS, Alkurd I, et al. In-vitro effect of pembrolizumab on different T regulatory cell subsets[J]. Clin Exp Immunol, 2018,191(2):189-197. DOI: 10.1111/cei.13060. doi:10.1111/cei.2018.191.issue-2 |
[22] | Yoshida K, Okamoto M, Sasaki J, et al. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells[J]. BMC Cancer, 2020,20(1):25. DOI: 10.1186/s12885-019-6499-y. doi:10.1186/s12885-019-6499-y |
[23] | Kamada T, Togashi Y, Tay C, et al. PD-1+regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer[J]. Proc Natl Acad Sci U S A, 2019,116(20):9999-10008. DOI: 10.1073/pnas.1822001116. doi:10.1073/pnas.1822001116 |
[24] | Wen L, Lu H, Li Q, et al. Contributions of T cell dysfunction to the resistance against anti-PD-1 therapy in oral carcinogenesis[J]. J Exp Clin Cancer Res, 2019,38(1):299. DOI: 10.1186/s13046-019-1185-0. doi:10.1186/s13046-019-1185-0 |
[25] | Oweida A, Hararah MK, Phan A, et al. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regula-tory T-cell infiltration[J]. Clin Cancer Res, 2018,24(21):5368-5380. DOI: 10.1158/1078-0432.CCR-18-1038. doi:10.1158/1078-0432.CCR-18-1038pmid:30042205 |
[26] | Di Pilato M, Kim EY, Cadilha BL, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint the-rapy[J]. Nature, 2019,570(7759):112-116. DOI: 10.1038/s41586-019-1215-2. doi:10.1038/s41586-019-1215-2pmid:31092922 |
[27] | Jacquelot N, Yamazaki T, Roberti MP, et al. Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade[J]. Cell Res, 2019,29(10):846-861. DOI: 10.1038/s41422-019-0224-x. doi:10.1038/s41422-019-0224-x |
[1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[2] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[3] | 吕璐, 孙鹏飞.肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[4] | 李俊, 薛胜, 王伟杰, 陶润, 张家俊.TPX2在肾透明细胞癌中的表达及其临床意义[J]. 国际肿瘤学杂志, 2023, 50(4): 214-219. |
[5] | 黄华玉, 龚虹云, 宋启斌.胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. |
[6] | 张雨潇, 张连生, 李莉娟.新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. |
[7] | 张碧霞, 丁江华.EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. |
[8] | 陈文莉, 倪志华, 陈红宇, 畅立圣, 范德生, 刘立伟, 丁青薇.免疫联合靶向治疗恶性腹膜间皮瘤1例[J]. 国际肿瘤学杂志, 2022, 49(8): 509-512. |
[9] | 张子叔, 乌新林.肿瘤微环境中乳酸的作用机制及相关治疗[J]. 国际肿瘤学杂志, 2022, 49(6): 349-352. |
[10] | 孙笑可, 杨宇.肝细胞癌基因组及转录组特征与免疫相关性[J]. 国际肿瘤学杂志, 2022, 49(5): 302-306. |
[11] | 丁心静, 丁江华.皮肤免疫相关不良事件与PD-1/PD-L1抑制剂临床疗效相关性的研究进展[J]. 国际肿瘤学杂志, 2022, 49(4): 225-228. |
[12] | 李宁, 张玢琪.免疫检查点抑制剂在子宫内膜癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(2): 125-128. |
[13] | 黄华玉, 宋启斌, 龚虹云, 宋佳.接受胸部放疗和免疫治疗肺癌患者肺炎发生率及影响因素分析[J]. 国际肿瘤学杂志, 2022, 49(12): 718-723. |
[14] | 李瑛珏, 路丹.PI3K通路在肿瘤免疫微环境中的作用机制[J]. 国际肿瘤学杂志, 2022, 49(11): 677-680. |
[15] | 徐秋月, 马咸梅, 岳琦.基于分子分型的子宫内膜癌免疫治疗[J]. 国际肿瘤学杂志, 2022, 49(11): 700-704. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||