国际肿瘤学杂志››2016,Vol. 43››Issue (6): 468-471.doi:10.3760/cma.j.issn.1673-422X.2016.06.019
刘立果,严雪冰,单泽志,金志明
收稿日期:
2015-10-15出版日期:
2016-06-08发布日期:
2016-04-27通讯作者:
金志明 E-mail:jzmgyp@aliyun.comLiu Liguo, Yan Xuebing, Shan Zezhi, Jin Zhiming
Received:
2015-10-15Online:
2016-06-08Published:
2016-04-27Contact:
Jin Zhiming E-mail:jzmgyp@aliyun.com摘要:肿瘤干细胞(CSC)标志物是用来标记并鉴定CSC的一类分子。目前研究发现与结直肠癌有关的CSC标志物主要有CD133、CD29、CD166、CD44、Nanog等。这些干细胞标志物通过多种分子机制参与肿瘤的发生发展,可作为潜在的治疗靶点,还可被用作评估患者预后的有效指标。
刘立果,严雪冰,单泽志,金志明. 肿瘤干细胞标志物在结直肠癌中的研究进展[J]. 国际肿瘤学杂志, 2016, 43(6): 468-471.
Liu Liguo, Yan Xuebing, Shan Zezhi, Jin Zhiming. Advances of cancer stem cell markers in colorectal cancer[J]. Journal of International Oncology, 2016, 43(6): 468-471.
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107. [2] Fanali C, Lucchetti D, Farina M, et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives[J]. World J Gastroenterol, 2014, 20(4):923-942. DOI: 10.3748/wjg.v20.i4.923. [3] Ulasov IV, Nandi S, Dey M, et al. Inhibition of sonic hedgehog and notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy[J]. Mol Med, 2011, 17(1/2): 103-112. DOI: 10.2119/molmed.2010.00062. [4] Corbo C, Orrù S, Gemei M, et al. Protein crosstalk in CD133+ colon cancer cells indicates activation of the Wnt pathway and upregulation of SRp20 that is potentially involved in tumorigenicity[J]. Proteomics, 2012, 12(12): 2045-2059. DOI: 10.1002/pmic.201100370. [5] Sahlberg SH, Spiegelberg D, Glimelius B, et al. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells[J]. PLoS One, 2014, 9(4): e94621. DOI: 10.1371/journal.pone.0094621. [6] Shmelkov SV, Butler JM, Hooper AT, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors[J]. J Clin Invest, 2008, 118(6): 2111-2120. [7] Horst D, Scheel SK, Liebmann S, et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer[J]. J Pathol, 2009, 219(4): 427-434. DOI: 10.1002/path.2597. [8] Huang XF, Chen JZ. Obesity, the PI3K/Akt signal pathway and colon cancer[J]. Obes Rev, 2009, 10(6): 610-616. DOI: 10.1111/j.1467-789X.2009.00607.x. [9] Song J, Zhang J, Wang J, et al. β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the hedgehog pathway[J]. Tumour Biol, 2015, 36(3): 2013-2021. DOI: 10.1007/s13277-014-2808-x. [10] Zhu Y, Feng Y, Liu H, et al. CD4+ CD29+ T cells are blamed for the persistent inflammatory response in ulcerative colitis[J]. Int J Clin Exp Pathol, 2015, 8(3): 2627-2637. [11] Vassos N, Rau T, Merkel S, et al. Prognostic value of β1 integrin expression in colorectal liver metastases[J]. Int J Clin Exp Pathol, 2014, 7(1): 288-300. [12] Chappell PE, Garner LI, Yan J, et al. Structures of CD6 and its ligand CD166 give insight into their interaction[J]. Structure, 2015, 23(8): 14261436. DOI: 10.1016/j.str.2015.05.019. [13] Weichert W, Knsel T, Bellach J, et al. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival[J]. J Clin Pathol, 2004, 57(11): 1160-1164. DOI: 10.1136/jcp.2004.016238. [14] Tachezy M, Zander H, Gebauer F, et al. Activated leukocyte cell adhesion molecule (CD166)its prognostic power for colorectal cancer patients[J]. J Surg Res, 2012, 177(1): e15-20. DOI: 10.1016/j.jss.2012.02.013. [15] Horst D, Kriegl L, Engel J, et al. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer[J]. Cancer Invest, 2009, 27(8): 844-850. DOI: 10.1080/07357900902744502. [16] Ni C, Zhang Z, Zhu X, et al. Prognostic value of CD166 expression in cancers of the digestive system: a systematic review and metaanalysis[J]. PLoS One, 2013, 8(8): e70958. DOI: 10.1371/journal.pone.0070958. [17] Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells[J]. Clin Cancer Res, 2008, 14(21): 6751-6760. DOI: 10.1158/10780432.CCR-08-1034. [18] Paulis YW, Huijbers EJ, Van Der Schaft DW, et al. CD44 enhances tumor aggressiveness by promoting tumor cell plasticity[J]. Oncotarget, 2015, 6(23): 19634-19646. DOI: 10.18632/oncotarget.3839. [19] Galizia G, Gemei M, Del Vecchio L, et al. Combined CD133/CD44 expression as a prognostic indicator of diseasefree survival in patients with colorectal cancer[J]. Arch Surg, 2012, 147(1): 18-24. DOI: 10.1001/archsurg.2011.795. [20] Li XD, Ji M, Wu J, et al. Clinical significance of CD44 variants expression in colorectal cancer[J]. Tumori, 2013, 99(1): 88-92. DOI: 10.1700/1248.13794. [21] Katoh S, Goi T, Naruse T, et al. Cancer stem cell marker in circulating tumor cells: expression of CD44 variant exon 9 is strongly correlated to treatment refractoriness, recurrence and prognosis of human colorectal cancer[J]. Anticancer Res, 2015, 35(1): 239-244. [22] Hong I, Hong SW, Chang YG, et al. Expression of the cancer stem cell markers CD44 and CD133 in colorectal cancer: an immunohistochemical staining analysis[J]. Ann Coloproctol, 2015, 31(3): 84-91. DOI: 10.3393/ac.2015.31.3.84. [23] Mato Prado M, Frampton AE, Stebbing J, et al. Gene of the month: NANOG[J]. J Clin Pathol, 2015, 68(10): 763-765. DOI: 10.1136/jclinpath-2015-203238. [24] Zhang J, Espinoza LA, Kinders RJ, et al. NANOG modulates stemness in human colorectal cancer[J]. Oncogene, 2013, 32(37): 4397-4405. DOI: 10.1038/onc.2012.461. [25] Palla AR, Piazzolla D, Abad M, et al. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer[J]. Oncogene, 2014, 33(19): 25132519. DOI: 10.1038/onc.2013.196. [26] Meng HM, Zheng P, Wang XY, et al. Overexpression of Nanog predicts tumor progression and poor prognosis in colorectal cancer[J]. Cancer Biol Ther, 2010, 9(4): 295302. DOI: 10.4161/cbt.9.4.10666. [27] Xu F, Dai C, Zhang R, et al. Nanog: a potential biomarker for liver metastasis of colorectal cancer[J]. Dig Dis Sci, 2012, 57(9): 2340-2346. DOI: 10.1007/s10620-012-2182-8. [28] Jeter CR, Yang T, Wang J, et al. Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions[J]. Stem Cells, 2015, 33(8): 2381-2390. DOI: 10.1002/stem.2007. [29] Lieto E, Galizia G, Orditura M, et al. CD26positive/CD326negative circulating cancer cells as prognostic markers for colorectal cancer recurrence[J]. Oncol Lett, 2015, 9(2): 542-550. DOI: 10.3892/ol.2014.2749. [30] Kraus S, Shapira S, Kazanov D, et al. Predictive levels of CD24 in peripheral blood leukocytes for the early detection of colorectal adenomas and adenocarcinomas[J]. Dis Markers, 2015,2015: 916098. DOI: 10.1155/2015/916098. [31] Yan X, Yan L, Su Z, et al. Zincfinger protein Xlinked is a novel predictor of prognosis in patients with colorectal cancer[J]. Int J Clin Exp Pathol, 2014, 7(6): 3150-3157. [32] Dai X, Ge J, Wang X, et al. OCT4 regulates epithelialmesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion[J]. Oncol Rep, 2013, 29(1): 155-160. DOI: 10.3892/or.2012.2086. [33] Shan ZZ, Yan XB, Yan LL, et al. Overexpression of Tbx3 is correlated with epithelialmesenchymal transition phenotype and predicts poor prognosis of colorectal cancer[J]. Am J Cancer Res, 2015, 5(1): 344-353. [34] Lundberg IV, LfgrenBurstrm A, Edin S, et al. SOX2 expression is regulated by BRAF and contributes to poor patient prognosis in colorectal cancer[J]. PLoS One, 2014, 9(7): e101957. DOI: 10.1371/journal.pone.0101957. |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[4] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[5] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华.炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[6] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[7] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[8] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞.原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[9] | 万芳, 杨钢, 李睿, 万启晶.食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[10] | 姚益新, 沈煜霖.血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[11] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好.基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[12] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹.胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[13] | 彭琴, 蔡玉婷, 王伟.KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[14] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹.结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[15] | 陈波光, 王苏贵, 张永杰.血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||