国际肿瘤学杂志››2020,Vol. 47››Issue (11): 682-685.doi:10.3760/cma.j.cn371439-20200401-00100
收稿日期:
2020-04-01修回日期:
2020-08-17出版日期:
2020-11-08发布日期:
2021-01-05通讯作者:
宋启斌,胡伟国 E-mail:qibinsong@163.com;hwg74@163.comDai Yueyu1, Song Qibin1,2(), Hu Weiguo1,2(
)
Received:
2020-04-01Revised:
2020-08-17Online:
2020-11-08Published:
2021-01-05Contact:
Song Qibin,Hu Weiguo E-mail:qibinsong@163.com;hwg74@163.com摘要:
解偶联蛋白(UCP)属于线粒体内膜上的线粒体载体蛋白家族,主要包括UCP1、UCP2和UCP3等。研究表明,UCP通过脂质褐变过程参与恶性肿瘤的发生发展。肿瘤细胞分泌锌-α2-糖蛋白刺激过氧化物酶体增殖物激活受体,诱导脂质褐变并表达UCP1,促进肿瘤的生长。磷脂酶C样蛋白1可上调UCP1表达,消耗异常脂质,使肿瘤细胞集落形成能力降低,抑制肿瘤的迁移和侵袭。另外,肿瘤抑制因子p53的辅助因子过氧化物酶体增殖物激活受体γ共激活因子-1α和过氧化物酶体增殖物激活受体γ共激活因子-1β能增强p53缺乏的脂肪细胞中UCP1的表达,UCP2的上调有助于肿瘤细胞逃避p53介导的细胞凋亡,激活活性氧系统,增强肿瘤的活力和增殖能力。
代月宇, 宋启斌, 胡伟国. 解偶联蛋白与肿瘤[J]. 国际肿瘤学杂志, 2020, 47(11): 682-685.
Dai Yueyu, Song Qibin, Hu Weiguo. Uncoupling proteins and tumor[J]. Journal of International Oncology, 2020, 47(11): 682-685.
[1] | Porter C. Quantification of UCP1 function in human brown adipose tissue[J]. Adipocyte, 2017,6(2):167-174. DOI: 10.1080/21623945.2017.1319535. doi:10.1080/21623945.2017.1319535pmid:28453364 |
[2] | Giatromanolaki A, Balaska K, Kalamida D, et al. Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism[J]. Cancer Biol Med, 2017,14(4):396-404. DOI: 10.20892/j.issn.2095-3941.2017.0089. doi:10.20892/j.issn.2095-3941.2017.0089pmid:29372106 |
[3] | Ravaud C, Paré M, Yao X, et al. Resveratrol and HIV-protease inhibitors control UCP1 expression through opposite effects on p38 MAPK phosphorylation in human adipocytes[J]. J Cell Physiol, 2020,235(2):1184-1196. DOI: 10.1002/jcp.29032. doi:10.1002/jcp.29032pmid:31294462 |
[4] | Dodd GT, Decherf S, Loh K, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat[J]. Cell, 2015,160(1-2):88-104. DOI: 10.1016/j.cell.2014.12.022. doi:10.1016/j.cell.2014.12.022pmid:25594176 |
[5] | Zong WX, Rabinowitz JD, White E. Mitochondria and cancer[J]. Mol Cell, 2016,61(5):667-676. DOI: 10.1016/j.molcel.2016.02.011. doi:10.1016/j.molcel.2016.02.011pmid:26942671 |
[6] | Alnabulsi A, Cash B, Hu Y, et al. The expression of brown fat-associated proteins in colorectal cancer and the relationship of uncoupling protein 1 with prognosis[J]. Int J Cancer, 2019,145(4):1138-1147. DOI: 10.1002/ijc.32198. doi:10.1002/ijc.32198pmid:30737786 |
[7] | Aguilar E, Esteves P, Sancerni T, et al. UCP2 Deficiency increases colon tumorigenesis by promoting lipid synjournal and depleting NADPH for antioxidant defenses[J]. Cell Rep, 2019, 28(9):2306-2316.e5. DOI: 10.1016/j.celrep.2019.07.097. doi:10.1016/j.celrep.2019.07.097pmid:31461648 |
[8] | Yu J, Shi L, Shen X, et al. UCP2 regulates cholangiocarcinoma cell plasticity via mitochondria-to-AMPK signals[J]. Biochem Pharmacol, 2019,166:174-184. DOI: 10.1016/j.bcp.2019.05.017. doi:10.1016/j.bcp.2019.05.017pmid:31085159 |
[9] | Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting[J]. FASEB J, 2018,32(9):4727-4743. DOI: 10.1096/fj.201701465RR. doi:10.1096/fj.201701465RRpmid:29570397 |
[10] | Chen HF, Hsu CM, Huang YS. CPEB2-dependent translation of long 3'-UTR UCP1 mRNA promotes thermogenesis in brown adipose tissue[J]. EMBO J, 2018,37(20):e99071. DOI: 10.15252/embj.201899071. doi:10.15252/embj.201899071pmid:30177570 |
[11] | Porter C, Herndon DN, Chondronikola M, et al. Human and mouse brown adipose tissue mitochondria have comparable UCP1 function[J]. Cell Metab, 2016,24(2):246-255. DOI: 10.1016/j.cmet.2016.07.004. doi:10.1016/j.cmet.2016.07.004pmid:27508873 |
[12] | Vaitkus JA, Celi FS. The role of adipose tissue in cancer-associated cachexia[J]. Exp Biol Med (Maywood), 2017,242(5):473-481. DOI: 10.1177/1535370216683282. doi:10.1177/1535370216683282 |
[13] | Xiong Z, Xiao W, Bao L, et al. Tumor cell "slimming" regulates tumor progression through PLCL1/UCP1-mediated lipid browning[J]. Adv Sci (Weinh), 2019,6(10):1801862. DOI: 10.1002/advs.201801862. |
[14] | Lima TI, Guimaraes D, Sponton CH, et al. Essential role of the PGC-1α/PPARβ axis in UCP3 gene induction[J]. J Physiol, 2019,597(16):4277-4291. DOI: 10.1113/jp278006. doi:10.1113/JP278006pmid:31228206 |
[15] | Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene[J]. Biochimie, 2017,134:86-92. DOI: 10.1016/j.biochi.2016.09.017. doi:10.1016/j.biochi.2016.09.017pmid:27693079 |
[16] | Kliewer KL, Ke JY, Tian M, et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice[J]. Cancer Biol Ther, 2015,16(6):886-897. DOI: 10.4161/15384047.2014.987075. doi:10.4161/15384047.2014.987075pmid:25457061 |
[17] | Castrejón-Tellez V, Rodríguez-Pérez JM, Pérez-Torres I, et al. The effect of resveratrol and quercetin treatment on PPAR mediated uncoupling protein (UCP-) 1, 2, and 3 expression in visceral white adipose tissue from metabolic syndrome rats[J]. Int J Mol Sci, 2016,17(7):1069. DOI: 10.3390/ijms17071069. |
[18] | Muter J, Brighton PJ, Lucas ES, et al. Progesterone-dependent induction of phospholipase C-related catalytically inactive protein 1 (PRIP-1) in decidualizing human endometrial stromal cells[J]. Endocrinology, 2016,157(7):2883-2893. DOI: 10.1210/en.2015-1914. |
[19] | Basu S, Gnanapradeepan K, Barnoud T, et al. Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α[J]. Genes Dev, 2018,32(3-4):230-243. DOI: 10.1101/gad.309062.117. doi:10.1101/gad.309062.117pmid:29463573 |
[20] | Hallenborg P, Fjære E, Liaset B, et al. p53 regulates expression of uncoupling protein 1 through binding and repression of PPARγ coactivator-1α[J]. Am J Physiol Endocrinol Metab, 2016,310(2):E116-E128. DOI: 10.1152/ajpendo.00119.2015. pmid:26578713 |
[21] | Zhang X, Li CF, Zhang L, et al. TRAF6 Restricts p53 mitochon-drial translocation, apoptosis, and tumor suppression[J]. Mol Cell, 2016,64(4):803-814. DOI: 10.1016/j.molcel.2016.10.002. doi:10.1016/j.molcel.2016.10.002pmid:27818144 |
[22] | Cordani M, Butera G, Dando I, et al. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial $O_{2-}$· production in cancer cells [J]. Br J Cancer, 2018,119(8):994-1008. DOI: 10.1038/s41416-018-0288-2. doi:10.1038/s41416-018-0288-2pmid:30318520 |
[23] | Dando I, Pacchiana R, Pozza ED, et al. UCP2 inhibition induces ROS/Akt/mTOR axis: role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism[J]. Free Radic Biol Med, 2017,113:176-189. DOI: 10.1016/j.freeradbiomed.2017.09.022. doi:10.1016/j.freeradbiomed.2017.09.022pmid:28962872 |
[24] | Yu J, Shi L, Lin W, et al. UCP2 promotes proliferation and chemoresistance through regulating the NF-κB/β-catenin axis and mitochondrial ROS in gallbladder cancer[J]. Biochem Pharmacol, 2020,172:113745. DOI: 10.1016/j.bcp.2019.113745. doi:10.1016/j.bcp.2019.113745pmid:31811866 |
[25] | Madreiter-Sokolowski CT, Gyorffy B, Klec C, et al. UCP2 and PRMT1 are key prognostic markers for lung carcinoma patients[J]. Oncotarget, 2017,8(46):80278-80285. DOI: 10.18632/oncotarget.20571. doi:10.18632/oncotarget.20571pmid:29113301 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||