国际肿瘤学杂志››2021,Vol. 48››Issue (6): 358-361.doi:10.3760/cma.j.cn371439-20200918-00068
收稿日期:
2020-09-18修回日期:
2020-09-26出版日期:
2021-06-08发布日期:
2021-06-24通讯作者:
乔贵宾 E-mail:guibinqiao@126.com基金资助:
Zhuang Weitao1,2, Qiao Guibin1()
Received:
2020-09-18Revised:
2020-09-26Online:
2021-06-08Published:
2021-06-24Contact:
Qiao Guibin E-mail:guibinqiao@126.comSupported by:
摘要:
表观遗传学改变与肿瘤发生、发展和转归密切相关,在肿瘤精准及微创诊疗方面具有很好的应用潜力。DNA甲基化、羟甲基化与组蛋白修饰检测技术的进步,推动了基于表观遗传标志的液体活检研究的开展,在实体肿瘤的溯源定位、早期诊断、临床分期、疗效评价、复发监测及预后判断方面均取得了重要进展。
庄伟涛, 乔贵宾. 基于表观遗传标志的液体活检在实体瘤诊疗中的研究与应用[J]. 国际肿瘤学杂志, 2021, 48(6): 358-361.
Zhuang Weitao, Qiao Guibin. Research and application of liquid biopsy based on epigenetic markers in the diagnosis and treatment of solid tumors[J]. Journal of International Oncology, 2021, 48(6): 358-361.
[1] | U.S. Food and Drug Administration. FDA approves first liquid biopsy next-generation sequencing companion diagnostic test[EB/OL].[2020-08-11]. https://www.fda.gov/news-events/press-announcements/fda-approves-first-liquid-biopsy-next-generation-sequencing-companion-diagnostic-test. |
[2] | Kang S, Li Q, Chen Q, et al. CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA[J]. Genome Biol, 2017,18(1):53. DOI: 10.1186/s13059-017-1191-5. doi:10.1186/s13059-017-1191-5 |
[3] | Jensen SØ, Øgaard N, Ørntoft MW, et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study[J]. Clin Epigenetics, 2019,11(1):158. DOI: 10.1186/s13148-019-0757-3. doi:10.1186/s13148-019-0757-3 |
[4] | Chen X, Gole J, Gore A, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test[J]. Nat Commun, 2020,11(1):3475. DOI: 10.1038/s41467-020-17316-z. doi:10.1038/s41467-020-17316-z |
[5] | Widschwendter M, Zikan M, Wahl B, et al. The potential of circula-ting tumor DNA methylation analysis for the early detection and management of ovarian cancer[J]. Genome Med, 2017,9(1):116. DOI: 10.1186/s13073-017-0500-7. doi:10.1186/s13073-017-0500-7pmid:29268796 |
[6] | Sheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation[J]. Cancer Prev Res (Phila), 2016,9(7):534-546. DOI: 10.1158/1940-6207.CAPR-15-0349. doi:10.1158/1940-6207.CAPR-15-0349pmid:26883721 |
[7] | Margalit S, Avraham S, Shahal T, et al. 5-Hydroxymethylcytosine as a clinical biomarker: fluorescence-based assay for high-throughput epigenetic quantification in human tissues[J]. Int J Cancer, 2020,146(1):115-122. DOI: 10.1002/ijc.32519. doi:10.1002/ijc.32519pmid:31211411 |
[8] | Pfeifer GP, Szabó PE. Gene body profiles of 5-hydroxymethylcytosine: potential origin, function and use as a cancer biomarker[J]. Epigenomics, 2018,10(8):1029-1032. DOI: 10.2217/epi-2018-0066. doi:10.2217/epi-2018-0066pmid:30052061 |
[9] | Zeng C, Stroup EK, Zhang Z, et al. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy[J]. Cancer Commun (Lond), 2019,39(1):12. DOI: 10.1186/s40880-019-0356-x. |
[10] | Li D, Zeng Z. Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis[J]. Biosci Rep, 2019, 39(8): BSR20191815. DOI: 10.1042/BSR20191815. |
[11] | Chrun ES, Modolo F, Daniel FI. Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis[J]. Pathol Res Pract, 2017,213(11):1329-1339. DOI: 10.1016/j.prp.2017.06.013. doi:10.1016/j.prp.2017.06.013 |
[12] | Li YH, Li YX, Li M, et al. The Ras-ERK1/2 signaling pathway regulates H3K9ac through PCAF to promote the development of pancreatic cancer[J]. Life Sci, 2020,256:117936. DOI: 10.1016/j.lfs.2020.117936. doi:10.1016/j.lfs.2020.117936 |
[13] | Chae YK, Davis AA, Jain S, et al. Concordance of genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast cancer[J]. Mol Cancer Ther, 2017,16(7):1412-1420. DOI: 10.1158/1535-7163.MCT-17-0061. doi:10.1158/1535-7163.MCT-17-0061 |
[14] | Guo Q, Wang J, Xiao J, et al. Heterogeneous mutation pattern in tumor tissue and circulating tumor DNA warrants parallel NGS panel testing[J]. Mol Cancer, 2018,17(1):131. DOI: 10.1186/s12943-018-0875-0. doi:10.1186/s12943-018-0875-0 |
[15] | Huang J, Wang L. Cell-free DNA methylation profiling analysis-technologies and bioinformatics[J]. Cancers (Basel), 2019,11(11):1741. DOI: 10.3390/cancers11111741. doi:10.3390/cancers11111741 |
[16] | Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes[J]. Nature, 2018,563(7732):579-583. DOI: 10.1038/s41586-018-0703-0. doi:10.1038/s41586-018-0703-0pmid:30429608 |
[17] | Shen SY, Burgener JM, Bratman SV, et al. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA[J]. Nat Protoc, 2019,14(10):2749-2780. DOI: 10.1038/s41596-019-0202-2. doi:10.1038/s41596-019-0202-2pmid:31471598 |
[18] | Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine[J]. Nat Biotechnol, 2011,29(1):68-72. DOI: 10.1038/nbt.1732. doi:10.1038/nbt.1732 |
[19] | Song CX, Yin S, Ma L, et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages[J]. Cell Res, 2017,27(10):1231-1242. DOI: 10.1038/cr.2017.106. doi:10.1038/cr.2017.106 |
[20] | Zeng H, He B, Xia B, et al. Bisulfite-free, nanoscale analysis of 5-Hydroxymethylcytosine at single base resolution[J]. J Am Chem Soc, 2018,140(41):13190-13194. DOI: 10.1021/jacs.8b08297. doi:10.1021/jacs.8b08297 |
[21] | Yuan F, Yu Y, Zhou YL, et al. 5hmC-MIQuant: ultrasensitive quantitative detection of 5-hydroxymethylcytosine in low-input cell-free DNA samples[J]. Anal Chem, 2020,92(1):1605-1610. DOI: 10.1021/acs.analchem.9b04920. doi:10.1021/acs.analchem.9b04920 |
[22] | Reddy D, Khade B, Pandya R, et al. A novel method for isolation of histones from serum and its implications in therapeutics and prognosis of solid tumours[J]. Clin Epigenetics, 2017,9:30. DOI: 10.1186/s13148-017-0330-x. doi:10.1186/s13148-017-0330-x |
[23] | Hlady RA, Zhao X, Pan X, et al. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA[J]. Theranostics, 2019,9(24):7239-7250. DOI: 10.7150/thno.35573. doi:10.7150/thno.35573pmid:31695765 |
[24] | Nassiri F, Chakravarthy A, Feng S, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes[J]. Nat Med, 2020,26(7):1044-1047. DOI: 10.1038/s41591-020-0932-2. doi:10.1038/s41591-020-0932-2 |
[25] | Nuzzo PV, Berchuck JE, Korthauer K, et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes[J]. Nat Med, 2020,26(7):1041-1043. DOI: 10.1038/s41591-020-0933-1. doi:10.1038/s41591-020-0933-1 |
[26] | Ko JMY, Ng HY, Lam KO, et al. Liquid biopsy serial monitoring of treatment responses and relapse in advanced esophageal squamous cell carcinoma[J]. Cancers (Basel), 2020,12(6):1352. DOI: 10.3390/cancers12061352. doi:10.3390/cancers12061352 |
[27] | Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA[J]. Proc Natl Acad Sci U S A, 2016,113(13):E1826-E1834. DOI: 10.1073/pnas.1519286113. doi:10.1073/pnas.1519286113 |
[28] | Barault L, Amatu A, Siravegna G, et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer[J]. Gut, 2018,67(11):1995-2005. DOI: 10.1136/gutjnl-2016-313372. doi:10.1136/gutjnl-2016-313372 |
[29] | Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis[J]. Lancet Respir Med, 2018,6(10):771-781. DOI: 10.1016/S2213-2600(18)30284-4. doi:S2213-2600(18)30284-4pmid:30100403 |
[30] | Jensen LH, Olesen R, Petersen LN, et al. NPY gene methylation as a universal, longitudinal plasma marker for evaluating the clinical benefit from last-line treatment with regorafenib in metastatic colorectal cancer[J]. Cancers (Basel), 2019,11(11):1649. DOI: 10.3390/cancers11111649. doi:10.3390/cancers11111649 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||