国际肿瘤学杂志››2019,Vol. 46››Issue (3): 174-177.doi:10.3760/cma.j.issn.1673-422X.2019.03.009
李悦1高磊1李红昌1于宏杰2张勇2
出版日期:
2019-03-08发布日期:
2019-05-17通讯作者:
张勇 E-mail:zhangyong75@msn.com基金资助:
国家自然科学基金(81703881)
Li Yue1, Gao Lei1, Li Hongchang1, Yu Hongjie2, Zhang Yong2
Online:
2019-03-08Published:
2019-05-17Contact:
Zhang Yong E-mail:zhangyong75@msn.comSupported by:
National Natural Science Foundation of China (81703881)
摘要:肿瘤相关巨噬细胞存在于肿瘤进展的所有阶段,起到促进血管生成、组织侵袭等作用,其中以M2型巨噬细胞居多。CD206是M2型巨噬细胞标志物,具有高度特异性,与肿瘤细胞的增殖和转移密不可分。已有研究表明CD206与乳腺癌、卵巢癌、胰腺癌、前列腺癌等恶性肿瘤密切相关,深化对CD206的研究对阐述肿瘤免疫微环境的形成机制、寻找更具针对性的靶向药物有一定的临床指导意义。
李悦,高磊,李红昌,于宏杰,张勇. M2型巨噬细胞标志物CD206与肿瘤[J]. 国际肿瘤学杂志, 2019, 46(3): 174-177.
Li Yue, Gao Lei, Li Hongchang, Yu Hongjie, Zhang Yong. M2 macrophage marker CD206 and tumor[J]. Journal of International Oncology, 2019, 46(3): 174-177.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394424. DOI: 10.3322/caac.21492. [2] 陈万青, 郑荣寿, 张思维. 中国恶性肿瘤的动态变化[J]. 科技导报, 2014, 32(26): 6571. DOI: 10.3981/j.issn.10007857.2014.26.009. [3] 魏智民, 孙玉发, 李刚, 等. 癌症相关性炎症与肿瘤微环境相关研究进展[J]. 中国肿瘤临床, 2018, 45(21): 11171121. DOI: 10.3969/j.issn.10008179.2018.21.767. [4] 李悦, 徐可, 韩增祥, 等. 结肠癌中肿瘤相关巨噬细胞的作用及靶向治疗的研究进展[J]. 实用肿瘤学杂志, 2018, 32(5): 450454. DOI: 10.11904/j.issn.10023070.2018.05.013. [5] Guo Q, Jin Z, Yuan Y, et al. New mechanisms of tumorassociated macrophages on promoting tumor progression: recent research advances and potential targets for tumor immunotherapy[J]. J Immunol Res, 2016, 2016: 9720912. DOI: 10.1155/2016/9720912. [6] Yang Y, Cheng S, Liang G, et al. Celastrol inhibits cancer metastasis by suppressing M2like polarization of macrophages[J]. Biochem Biophys Res Commun, 2018, 503(2): 414419. DOI: 10.1016/j.bbrc.2018.03.224. [7] Suzuki Y, Shirai M, Asada K, et al. Macrophage mannose receptor, CD206, predict prognosis in patients with pulmonary tuberculosis[J]. Sci Rep, 2018, 8(1): 13129. DOI: 10.1038/s41598018315655. [8] Hu Z, Shi X, Yu B, et al. Structural insights into the pHdependent conformational change and collagen recognition of the human mannose receptor[J]. Structure, 2018, 26(1): 6071. DOI: 10.1016/j.str.2017.11.006. [9] Azad AK, Rajaram MV, Schlesinger LS. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and terapeutics[J]. J Cytol Mol Biol, 2014, 1(1): pii: 1000003. DOI: 10.13188/23254653.1000003. [10] Dong P, Ma L, Liu L, et al. CD86+/CD206+, diametrically polarized tumorassociated macrophages, predict hepatocellular carcinoma patient prognosis[J]. Int J Mol Sci, 2016, 17(3): 320. DOI: 10.3390/ijms17030320. [11] KoruSengui T, Santander AM, Miao F, et al. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crownlike structures associated with lower survival compared to nonblack Latinas and Caucasians[J]. Breast Cancer Res Treat, 2016, 158(1): 113126. DOI: 10.1007/s1054901638473. [12] Azad AK, Rajaram MV, Metz WL, et al. γTilmanocept, a new radiopharmaceutical tracer for cancer sentinel lymph nodes, binds to the mannose receptor (CD206)[J]. J Immunol, 2015, 195(5): 20192029. DOI: 10.4049/jimmunol.1402005. [13] Qiu SQ, Waaijer SJH, Zwager MC, et al. Tumorassociated macrophages in breast cancer: innocent bystander or important player[J]. Cancer Treat Rev, 2018, 70: 178179. DOI: 10.1016/j.ctrv.2018.08.010. [14] Zhao X, Qu J, Sun Y, et al. Prognostic significance of tumorassociated macrophages in breast cancer: a metaanalysis of the literature[J]. Oncotarget, 2017, 8(18): 3057630586. DOI: 10.18632/oncotarget.15736. [15] Xu X, Ye J, Huang C, et al. M2 macrophagederived IL6 mediates resistance of breast cancer cells to hedgehog inhibition[J]. Toxicol Appl Pharmacol, 2019, 1(364): 7782. DOI: 10.1016/j.taap.2018.12.013. [16] Fusser M, verbye A, Pandya AD, et al. Cabazitaxelloaded poly (2ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft[J]. J Control Release, 2019, 293: 183192. DOI: 10.1016/j.jconrel.2018.11.029. [17] Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 41: 314. DOI: 10.1016/j.bpobgyn.2016.08.006. [18] Gupta KK, Gupta VK, Naumann RW. Ovarian cancer: screening and future directions[J]. Int J Gynecol Cancer, 2019, 29(1): 195200. DOI: 10.1136/ijgc2018000016. [19] Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review[J]. Semin Oncol Nurs, 2019, (19): 3001230019. DOI: 10.1016/j.soncn.2019.02.001. [20] Jing X, Peng J, Dou Y, et al. Macrophage ERα promoted invasion of endometrial cancer cell by mTOR/KIF5Bmediated epithelial to mesenchymal transition[J]. Immunol Cell Biol, 2019, In press. DOI: 10.1111/imcb.12245. [21] Chen X, Zhou J, Li X, et al. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumorpromoted phenotype[J]. Cancer Lett, 2018, 435: 8091. DOI: 10.1016/j.canlet.2018.08.001. [22] Neelakantan D, Dogra S, Devapatla BR, et al. Multifunctional APJ pathway promotes ovarian cancer progression and metastasis[J]. Mol Cancer Res, 2019, In press. DOI: 10.1158/15417786.MCR180989. [23] Ko SY, Ladanyi A, Lengyel E, et al. Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumorpromoting phenotype[J]. Am J Pathol, 2014, 184(1): 271281. DOI: 10.1016/j.ajpath.2013.09.017. [24] Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11): 29132921. DOI: 10.1158/00085472.CAN140155. [25] Sun H, Ma H, Hong G, et al. Survival improvement in patients with pancreatic cancer by decade: a period analysis of the SEER database, 19812010[J]. Sci Rep, 2014, 4: 6747. DOI: 10.1038/srep06747. [26] Wang W, Marinis JM, Beal AM, et al. RIP1 kinase drives macrophagemediated adaptive immune tolerance in pancreatic cancer[J]. Cancer Cell, 2018, 34(5): 757774. DOI: 10.1016/j.ccell.2018.10.006. [27] Rouven LK, Eric F, Christine H, et al. A myeloid and lymphoid infltrate in murine pancreatic tumors exposed to plasmatreated medium[J]. Clin Plasma Med, 2018, 11: 1017. DOI: 10.1016/j.cpme.2018.07.001. [28] Wang B, Zheng X, Liu J, et al. Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumorinfiltrating M2 macrophages[J]. J Pharmacol Sci, 2018, 137(3): 290298. DOI: 10.1016/j.jphs.2018.07.007. [29] Zarif JC, Yang W, Hernandez JR, et al. The identification of macrophageenriched glycoproteins using glycoproteomics[J]. Mol Cell Proteomics, 2017, 16(6): 10291037. DOI: 10.1074/mcp.M116.064444. [30] Zarif JC, Valle JB, Hicks JL, et al. Mannose receptorpositive macrophage infiltration correlates with prostate cancer onset and metastatic castrationresistant disease[J]. Eur Urol Oncol, 2018, In press. DOI: 10.1016/j.euo.2018.09.014. [31] SolísMartínez R, CancinoMarentes M, HernándezFlores G, et al. Regulation of immunophenotype modulation of monocytesmacrophages from M1 into M2 by prostate cancer cellculture supernatant via transcription factor STAT3[J]. Immunol Lett, 2018, 196: 140148. DOI: 10.1016/j.imlet.2018.02.009. [32] Jones JD, Sinder BP, Paige D, et al. Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis[J]. Neoplasia, 2019, 21(2): 172184. DOI: 10.1016/j.neo.2018.11.003. [33] Yao Z, Zhang J, Zhang B, et al. Imatinib prevents lung cancer metastasis by inhibiting M2like polarization of macrophages[J]. Pharmacol Res, 2018, 133: 121131. DOI: 10.1016/j.phrs.2018.05.002. [34] Smolarczyk R, Cichoń T, Pilny E, et al. Combination of antivascular agentDMXAA and HIF1α inhibitordigoxin inhibits the growth of melanoma tumors[J]. Sci Rep, 2018, 8(1): 7355. DOI: 10.1038/s4159801825688y. [35] Ding P, Wang W, Wang J, et al. Expression of tumorassociated macrophage in progression of human glioma[J]. Cell Biochem Biophys, 2014, 70(3): 16251631. DOI: 10.1007/s1201301401053. [36] Lin X, Wang S, Sun M, et al. miR1955p/NOTCH2mediated EMT modulates IL4 secretion in colorectal cancer to affect M2like TAM polarization[J]. J Hematol Oncol, 2019, 12(1): 20. DOI: 10.1186/s1304501907087. [37] Kovaleva OV, Samoilova DV, Shitova MS, et al. Tumor associated macrophages in kidney cancer[J]. Anal Cell Pathol (Amst), 2016: 9307549. DOI: 10.1155/2016/9307549. [38] Liu H, Dong H, Jiang L, et al. Bleomycin inhibits proliferation and induces apoptosis in TPC1 cells through reversing M2macrophages polarization[J]. Oncol Lett, 2018, 16(3): 38583866. DOI: 10.3892/ol.2018.9103. [39] Andersen MN, Andersen NF, RodgaardHansen S, et al. The novel biomarker of alternative macrophage activation, soluble mannose receptor (sMR/sCD206): implications in multiple myeloma[J]. Leuk Res, 2015, 39(9): 971975. DOI: 10.1016/j.leukres.2015.06.003. [40] Josephs DH, Bax HJ, Karagiannis SN. Tumourassociated macrophage polarisation and reeducation with immunotherapy[J]. Front Biosci (Elite Ed), 2015, 7: 293308. [41] Hodgkinson N, Kruger C, Abrahamse H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells[J]. Tumour Biol, 2017, 39(10): 1010428317734691. DOI: 10.1177/1010428317734691. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||