国际肿瘤学杂志››2019,Vol. 46››Issue (3): 178-180.doi:10.3760/cma.j.issn.1673-422X.2019.03.010
吴颖1付白雪1戴璐2黄俊2滕一镔2李琳琳2章静雯2黄玉红1
出版日期:
2019-03-08发布日期:
2019-05-17通讯作者:
黄玉红 E-mail:huangyh_1020@163.com基金资助:
辽宁省教育厅betway必威亚洲 项目(L2013356);教育部留学回国人员科研启动基金(〔2010〕1561)
Wu Ying1, Fu Baixue1, Dai Lu2, Huang Jun2, Teng Yibin2, Li Linlin2, Zhang Jingwen2, Huang Yuhong1
Online:
2019-03-08Published:
2019-05-17Contact:
Huang Yuhong E-mail:huangyh_1020@163.comSupported by:
Liaoning Provincial Department of Education Scientific Research General Project (L2013356); Research Fund for the Return of Students from the Ministry of Education (〔2010〕1561)
摘要:苹果酸脱氢酶2(MDH2)在肿瘤中的作用存在双面性,在一些肿瘤中具有促癌作用,而在另一些肿瘤中具有抑制作用。MDH2的功能与能量代谢、肿瘤耐药性及其伪缺氧相互联系。MDH2在肿瘤的发生、发展、侵袭和转移中起重要作用,深入了解MDH2在肿瘤中的作用机制,可为临床提供新的肿瘤干预分子靶点。
吴颖,付白雪,戴璐,黄俊,滕一镔,李琳琳,章静雯,黄玉红. 苹果酸脱氢酶2在肿瘤中的作用机制[J]. 国际肿瘤学杂志, 2019, 46(3): 178-180.
Wu Ying1, Fu Baixue, Dai Lu, Huang Jun, Teng Yibin, Li Linlin, Zhang Jingwen, Huang Yuhong. Functional mechanism of malate dehydrogenase 2 in tumors[J]. Journal of International Oncology, 2019, 46(3): 178-180.
[1] Liu R, Wang H, Liu J, et al. Uncovering the embryonic developmentrelated proteome and metabolome signatures in breast muscle and intramuscular fat of fastand slowgrowing chickens[J]. BMC Genomics, 2017, 18(1): 816. DOI: 10.1186/s1286401741503. [2] AitElMkadem S, DayemQuere M, Gusic M, et al. Mutations in MDH2, encoding a Krebs cycle enzyme, cause earlyonset severe encephalopathy[J]. Am J Hum Genet, 2017, 100(1): 151159. DOI: 10.1016/j.ajhg.2016.11.014. [3] Oldham WM, Clish CB, Yang Y, et al. Hypoxiamediated increases in L2hydroxyglutarate coordinate the metabolic response to reductive stress[J]. Cell Metab, 2015, 22(2): 291303. DOI: 10.1016/j.cmet.2015.06.021. [4] Lo YW, Lin ST, Chang SJ, et al. Mitochondrial proteomics with siRNA knockdown to reveal ACAT1 and MDH2 in the development of doxorubicinresistant uterine cancer[J]. J Cell Mol Med, 2015, 19(4): 744759. DOI: 10.1111/jcmm.12388. [5] Kim BS, Lee K, Jung HJ, et al. HIF1α suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1[J]. Biochem Biophys Res Commun, 2015, 458(1): 1420. DOI: 10.1016/j.bbrc.2015.01.031. [6] Taniguchi S, Shimatani Y, Fujimori M, et al. Tumortargeting therapy using geneengineered anaerobicnonpathogenic bifidobacterium longum[J]. Methods Mol Biol, 2016, 1409: 4960. DOI: 10.1007/9781493935154_5. [7] Zhuang Y, Xiang J, Bao W, et al. MDH2 stimulated by estrogenGPR30 pathway downregulated PTEN expression promoting the proliferation and invasion of cells in endometrial cancer[J]. Transl Oncol, 2017, 10(2): 203210. DOI: 10.1016/j.tranon.2017.01.009. [8] Ban HS, Xu X, Jang K, et al. A novel malate dehydrogenase 2 inhibitor suppresses hypoxiainducible factor1 by regulating mitochondrial respiration[J]. PLoS One, 2016, 11(9): e0162568. DOI: 10.1371/journal.pone.0162568. [9] Wei J, Yang Y, Lu M, et al. Recent advances in the discovery of HIF1αp300/CBP inhibitors as anticancer agents[J]. Mini Rev Med Chem, 2018, 18(4): 296309. DOI: 10.2174/1389557516666160630124938. [10] Lima Queiroz A, Zhang B, Comstock DE, et al. miR1265p targets malate dehydrogenase 1 in nonsmall cell lung carcinomas[J]. Biochem Biophys Res Commun, 2018, 499(2): 314320. DOI: 10.1016/j.bbrc.2018.03.154. [11] Latonen L, Afyouniab E, Jylh A, et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression[J]. Nat Commun, 2018, 9(1): 1176. DOI: 10.1038/s41467018035736. [12] Cascón A, CominoMéndez I, CurrásFreixes M, et al. Wholeexome sequencing identifies MDH2 as a new familial paragangliomagene[J]. J Natl Cancer Inst, 2015, 107(5): pii: djv053. DOI: 10.1093/jnci/djv053. [13] Liu Y, Asnani A, Zou L, et al. Visnagin protects against doxorubicininduced cardiomyopathy through modulation of mitochondrial malate dehydrogenase[J]. Sci Transl Med, 2014, 6(266): 266170. DOI: 10.1126/scitranslmed.3010189. [14] Beezhold K, Byersdorfer CA. Targeting immunometabolism to improve anticancer therapies[J]. Cancer Lett, 2018, 414: 127135. DOI: 10.1016/j.canlet.2017.11.005. [15] Ylip A, Kivinummi K, Kohvakka A, et al. Transcriptome sequencing reveals PCAT5 as a novel ERGregulated long noncoding RNA in prostate cancer[J]. Cancer Res, 2015, 75(19): 40264031. DOI: 10.1158/00085472.CAN150217. [16] Kratochvilova M, Raudenska M, Heger Z, et al. Amino acid profiling of zinc resistant prostate cancer cell lines: associations with cancer progression[J]. Prostate, 2017, 77(6): 604616. DOI: 10.1002/pros.23304. [17] Shen H, Hau E, Joshi S, et al. Sensitization of glioblastoma cells to irradiation by modulating the glucose metabolism[J]. Mol Cancer Ther, 2015, 14(8): 17941804. DOI: 10.1158/15357163.MCT150247. [18] Gentric G, Kieffer Y, Mieulet V, et al. PMLregulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers[J]. Cell Metab, 2019, 29(1): 156173.e10. DOI: 10.1016/j.cmet.2018.09.002. [19] Zhang B, Tornmalm J, Widengren J, et al. Characterization of the role of the malate dehydrogenases to lung tumor cell survival[J]. J Cancer, 2017, 8(11): 20882096. DOI: 10.7150/jca.19373. [20] Xi L. Visnagin—a new protectant against doxorubicin cardiotoxicity? Inhibition of mitochondrial malate dehydrogenase 2 (MDH2) and beyond[J]. Ann Transl Med, 2016, 4(4): 65. DOI: 10.3978/j.issn.23055839.2015.10.43. [21] Ippolito L, Marini A, Cavallini L, et al. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells[J]. Oncotarget, 2016, 7(38): 6189061904. DOI: 10.18632/oncotarget.11301. [22] Ciccarone F, Vegliante R, Di Leo L, et al. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer[J]. Semin Cancer Biol, 2017, 47: 5056. DOI: 10.1016/j.semcancer.2017.06.008. [23] Jochmanová I, Zhuang Z, Pacak K. Pheochromocytoma: gasping for air[J]. Horm Cancer, 2015, 6(56): 191205. DOI: 10.1007/s1267201502314. [24] Chen C, Zhang LG, Liu J, et al. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data[J]. Onco Targets Ther, 2016, 9: 15451557. DOI: 10.2147/OTT.S98807. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志.宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||