国际肿瘤学杂志››2016,Vol. 43››Issue (6): 452-454.doi:10.3760/cma.j.issn.1673-422X.2016.06.014
崔金元,陶凯雄
收稿日期:
2015-11-09出版日期:
2016-06-08发布日期:
2016-04-27通讯作者:
陶凯雄 E-mail:tao_kaixiong@163.com基金资助:
国家自然科学基金(81572413)
Cui Jinyuan, Tao Kaixiong
Received:
2015-11-09Online:
2016-06-08Published:
2016-04-27Contact:
Tao Kaixiong E-mail:tao_kaixiong@163.comSupported by:
National Natural Science Foundation of China (81572413)
摘要:确定预测PD-1/PD-L1通路阻断治疗临床反应的生物标志物有助于患者筛查和个体化治疗。研究证明治疗前肿瘤组织中肿瘤细胞和肿瘤浸润淋巴细胞PDL1的高表达,肿瘤间CD8+T细胞的大量浸润以及肿瘤细胞基因高突变负荷的患者阻断PD-1/PD-L1通路治疗的临床疗效更明显,这些生物标志物有望成为筛查肿瘤患者的指标。
崔金元,陶凯雄. 生物标志物在阻断PD-1/PD-L1通路治疗肿瘤中的预测性作用[J]. 国际肿瘤学杂志, 2016, 43(6): 452-454.
Cui Jinyuan, Tao Kaixiong. Predictive biomarkers in tumor treatment by blocking PD-1/PD-L1 pathway[J]. Journal of International Oncology, 2016, 43(6): 452-454.
[1] Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy[J]. J Clin Oncol, 2015, 33(17): 1974-1982. DOI: 10.1200/JCO.2014.59.4358. [2] 邵婧怡, 孙国平. 程序性死亡受体1及其配体在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2015 (5): 358-360. DOI: 10.3760/cma.j.issn.1673422X.2015.05.010. [3] Keir ME, Butte MJ, Freeman GJ, et al. PD1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704. DOI: 10.1146/annurev.immunol.26.021607.090331. [4] 施敏骅, 邢玉斐, 张增利, 等. 肺癌细胞中可溶性程序性死亡配体1的表达及其对T细胞功能的影响[J]. 中华肿瘤杂志, 2013, 35(2): 85-88. DOI: 10.3760/cma.j.issn.02533766.2013.02.002. [5] Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape[J]. Sci Transl Med, 2012, 4(127): 127ra37. DOI: 10.1126/scitranslmed.3003689. [6] Tumeh PC, Harview CL, Yearley JH, et al. PD1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. DOI: 10.1038/nature13954. [7] Dong H, Strome SE, Salomao DR, et al. Tumorassociated B7H1 promotes Tcell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800. DOI: 10.1038/nm730. [8] Azuma T, Yao S, Zhu GF, et al. B7H1 is a ubiquitous antiapoptotic receptor on cancer cells[J]. Blood, 2008, 111(7): 3635-3643. DOI: 10.1182/blood-2007-11-123141. [9] Yang Y, Wu KE, Zhao E, et al. B7H1 enhances proliferation ability of gastric cancer stemlike cells as a receptor[J]. Oncol Lett, 2015, 9(4): 18331838. DOI: 10.3892/ol.2015.2949. [10] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264. DOI: 10.1038/nrc3239. [11] Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the antiPDL1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528): 563-567. DOI: 10.1038/nature14011. [12] Philips GK, Atkins M. Therapeutic uses of antiPD1 and antiPDL1 antibodies[J]. Int Immunol, 2015, 27(1): 39-46. DOI: 10.1093/intimm/dxu095. [13] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of antiPDL1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. DOI: 10.1056/NEJMoa1200694. [14] Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what′s here, what′s next?[J]. Curr Opin Immunol, 2015, 33(33): 23-35. DOI: 10.1016/j.coi.2015.01.006. [15] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of antiPD1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 24432454. DOI: 10.1056/NEJMoa1200690. [16] Wolchok JD. PD-1 blockers[J]. Cell, 2015, 162(5): 937. DOI: 10.1016/j.cell.2015.07.045. [17] Powles T, Eder JP, Fine GD, et al. MPDL3280A (antiPD-L1) treatment leads to clinical activity in metastatic bladder cancer[J]. Nature, 2014, 515(7528): 558-562. DOI: 10.1038/nature13904. [18] Swaika A, Hammond WA, Joseph RW. Current state of antiPDL1 and antiPD1 agents in cancer therapy[J]. Mol Immunol, 2015, 67(2 Pt A): 4-17. DOI: 10.1016/j.molimm.2015.02.009. [19] Lote H, Cafferkey C, Chau I. PD1 and PDL1 blockade in gastrointestinal malignancies[J]. Cancer Treat Rev, 2015, 41(10): 893903. DOI: 10.1016/j.ctrv.2015.09.004. [20] Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to antiPD-1 therapy[J]. Clin Cancer Res, 2014, 20(19): 5064-5074. DOI: 10.1158/1078-0432.CCR-13-3271. [21] Atefi M, Avramis E, Lassen A, et al. Effects of MAPK and PI3K pathways on PDL1 expression in melanoma[J]. Clin Cancer Res, 2014, 20(13): 34463457. DOI: 10.1158/10780432.CCR132797. [22] Rech AJ, Vonderheide RH. Dynamic interplay of oncogenes and T cells induces PDL1 in the tumor microenvironment[J]. Cancer Discov, 2013, 3(12): 1330-1332. DOI: 10.1158/21598290.CD-13-0775. [23] Brahmer JR, Drake CG, Wollner I, et al. Phase Ⅰ study of singleagent antiprogrammed death1 (MDX1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. J Clin Oncol, 2010, 28(19): 3167-3175. DOI: 10.1200/JCO.2009.26.7609. [24] Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancerassociated genes[J]. Nature, 2013, 499(7457): 214218. DOI: 10.1038/nature12213. [25] Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumourspecific mutant antigens[J]. Nature, 2014, 515(7528): 577-581. DOI: 10.1038/nature13988. [26] Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a Tcelldependent mechanism of cancer immunoediting[J]. Nature, 2012, 482(7385): 400-404. DOI: 10.1038/nature10755. [27] Fritsch EF, Rajasagi M, Ott PA, et al. HLAbinding properties of tumor neoepitopes in humans[J]. Cancer Immunol Res, 2014, 2(6): 522-529. DOI: 10.1158/2326-6066.CIR-13-0227. [28] Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD1 and inhibits T cell activation[J]. Nat Immunol, 2001, 2(3): 261-268. DOI: 10.1038/85330. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲.血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维.Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊.局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华.Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青.血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺.PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 张百红, 岳红云.新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[8] | 许凤琳, 吴刚.EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[9] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[10] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[11] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[12] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东.ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[13] | 刘静, 刘芹, 黄梅.基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳.炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||