Journal of International Oncology››2015,Vol. 42››Issue (2): 126-129.doi:10.3760/cma.j.issn.1673-422X.2015.02.012
Previous ArticlesNext Articles
hang Xiaoying, Wang Xiaofang
Online:
2015-02-08Published:
2015-02-02Contact:
Wang Xiaofang E-mail:xiaofangwang2005@163.comhang Xiaoying, Wang Xiaofang. Microenvironment and the occurrence and development of cancer stem cells[J]. Journal of International Oncology, 2015, 42(2): 126-129.
[1] Pienta KJ, McGregor N, Axelrod R, et al. Ecological therapy for cancer:defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments[J]. Transl Oncol, 2008, 1(4): 158-164. [2] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4): 483-495. [3] LaBarge MA. The difficulty of targeting cancer stem cell niches[J]. Clin Cancer Res, 2010, 16(12): 3121-3129. [4] Shackleton M. Normal stem cells and cancer stem cells: similar and different[J].Semin Cancer Biol, 2010, 20(2): 85-92. [5] Niess H, Camaj P, Renner A, et al. Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis[J]. Target Oncol, 2014, In press. [6] Zhao Y, Bao Q, Renner A, et al. Cancer stem cells and angiogenesis[J]. Int J Dev Biol, 2011, 55(45): 477-482. [7] Sosa MS, AvivarValderas A, Bragado P, et al. ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease[J]. Clin Cancer Res, 2011, 17(18): 5850-5857. [8] Chetty C, Vanamala SK, Gondi CS, et al. MMP9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells[J]. Cell Signal, 2012, 24(2): 549-559. [9] Guise T. Examining the metastatic niche: targeting the microenvironment[J]. Semin Oncol, 2010, 37 Suppl 2: S2-14. [10] Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells[J]. Cancer Cell, 2007, 11(1): 69-82. [11] Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche[J]. Cancer Res, 2011, 71(15): 5346-5356. [12] Krishnamurthy S, Dong Z, Vodopyanov D, et al. Endothelial cellinitiated signaling promotes the survival and selfrenewal of cancer stem cells[J]. Cancer Res, 2010, 70(23): 9969-9978. [13] Beck B, Driessens G, Goossens S, et al. A vascular niche and a VEGFNrp1 loop regulate the initiation and stemness of skin tumours[J]. Nature, 2011, 478(7369): 399-403. [14] De Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not?[J]. Nat Rev Clin Oncol, 2011, 8(7): 393-404. [15] Heddleston JM, Li Z, Lathia JD, et al. Hypoxia inducible factors in cancer stem cells[J]. Br J Cancer, 2010, 102(5): 789-795. [16] Lu X, Kang Y. Hypoxia and hypoxiainducible factors: master regulators of metastasis[J]. Clin Cancer Res, 2010, 16(24): 5928-5935. [17] Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha[J]. Brain, 2010, 133(Pt 4): 983-995. [18] Li Z, Bao S, Wu Q, et al. Hypoxiainducible factors regulate tumorigenic capacity of glioma stem cells[J]. Cancer Cell, 2009, 15(6): 501-513. [19] 童流妹. 微环境乏氧通过肿瘤干细胞途径对脑胶质瘤细胞放射敏感性的影响及其机制的研究[D] . 苏州: 苏州大学, 2010. [20] Li P, Zhou C, Xu L, et al. Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study[J]. Int J Med Sci, 2013, 10(4): 399-407. [21] Hermann PC, Trabulo SM, Sainz B Jr. Multimodal treatment eliminates cancer stem cells and leads to longterm survival in primary human pancreatic cancer tissue xenografts[J]. PLoS One, 2013, 8(6): e66371. [22] Mimeault M, Batra SK. Hypoxiainducing factors as master regulators of stemness properties and altered metabolism of cancer and metastasisinitiating cells[J]. J Cell Mol Med, 2013, 17(1): 30-54. [23] May CD, Sphyris N, Evans KW. Epithelialmesenchymaltransition and cancer stem cells: a dangerously dynamic duo in breast cancer progression[J]. Breast Cancer Res, 2011, 13(1): 202. [24] Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelialtomesenchymal transition[J]. Breast Cancer Res, 2011, 13(3): 211. [25] Spugnini EP, Citro G, Fais S. Proton pump inhibitors as anti vacuolarATPases drugs: a novel anticancer strategy[J]. J Exp Clin Cancer Res, 2010, 29: 44. [26] Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemiainitiating cells[J]. Nature, 2008, 453(7198): 1072-1078. |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying.Research progress of habitat analysis in radiomics of malignant tumors[J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong.Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer[J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie.Research progress of myeloid-derived suppressor cells in tumor angiogenesis[J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong.Breast microbiota and breast cancer: present and future[J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng.Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance[J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[6] | Ding Hao, Ying Jintao, Fu Maoyong.Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[7] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai.Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy[J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[8] | Xu Liangfu, Li Yuanfei.Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[9] | Zhu Yi, Chen Jian.Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects[J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[10] | Xie Lulu, Ding Jianghua.Progress of immunotherapy-based strategy in triple-negative breast cancer[J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[11] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu.Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer[J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[12] | Ma Xueyan, Lu Lili, Sun Pengfei.Advances in the immune microenvironment in cervical cancer[J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[13] | Wu Jiayu, Liu Jiacheng.Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule[J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[14] | Zhang Zishu, Wu Xinlin.Mechanism of action of lactic acid in tumor microenvironment and related treatment[J]. Journal of International Oncology, 2022, 49(6): 349-352. |
[15] | Wu Jiayi, Chen Keyu, Shao Xiying, Wang Xiaojia.Research progress on the mechanism of CDK4/6 inhibitors promoting antitumor immunity by regulating the immune microenvironment of triple negative breast cancer[J]. Journal of International Oncology, 2022, 49(6): 362-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||