betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (9): 711-715.DOI:10.3969/j.issn.2097-0005.2022.09.010
收稿日期:
2022-05-23出版日期:
2022-09-25发布日期:
2022-11-03通讯作者:
李静作者简介:
江益凡,蚌埠医学院2018级临床医学本科,E-mail:jiangyifan0409@163.com。基金资助:
Yifan JIANG1,2(), Yang SUN2, Yan ZHANG2, Jing LI1(
)
Received:
2022-05-23Online:
2022-09-25Published:
2022-11-03Contact:
Jing LI摘要:
肠道菌群与宿主形成庞大的共生生态系统,通过影响肠管中各种细胞的功能来调节宿主肠道的免疫状态。肠上皮细胞、免疫细胞和肠道菌群之间的相互作用可诱导机体产生特异性免疫反应,抵御有害物质损伤肠管。研究认为,维持效应性免疫与免疫耐受性之间的平衡成为临床治疗免疫性疾病的重要靶点。肠道黏膜免疫系统通过对肠道内共生菌的识别形成免疫耐受,对侵入的病原体识别并激活效应性免疫,以此建立肠道的先天免疫与适应性免疫系统。本综述简要概括肠黏膜免疫耐受的建立机制、肠道菌群在诱导肠黏膜免疫耐受中的作用和可能机制以及肠道菌群诱导免疫耐受在炎症性肠病中的作用,可对共生菌治疗炎症性肠病的应用提供参考。
江益凡, 孙洋, 张艳, 李静. 肠道菌群与肠黏膜免疫耐受的研究进展[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(9): 711-715.
Yifan JIANG, Yang SUN, Yan ZHANG, Jing LI. Study advances in intestinal flora and intestinal mucosal immune tolerance[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(9): 711-715.
1 | Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38: 23. |
2 | Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life[J]. Tissue Barriers, 2017, 5(4): e1373208. |
3 | Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target?[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 9. |
4 | Mörbe UM, Jørgensen PB, Fenton TM, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function[J]. Mucosal Immunol, 2021, 14(4): 793. |
5 | Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease[J]. Rev Esp Enferm Dig, 2015, 107(11): 686. |
6 | Rathinam VAK, Chan FK. Inflammasome, inflammation, and tissue homeostasis[J]. Trends Mol Med, 2018, 24(3): 304. |
7 | Grondin JA, Kwon YH, Far PM, et al. Mucins in intestinal mucosal defense and inflammation:learning from clinical and experimental studies[J]. Front Immunol, 2020, 11: 2054. |
8 | Cristofori F, Dargenio VN, Dargenio C, et al. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body[J]. Front Immunol, 2021, 12: 578386. |
9 | Shan MM, Gentile M, Yeiser JR, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J]. Science, 2013, 342(6157): 447. |
10 | Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad[J]. Scand J Gastroenterol, 2017, 52(11): 1185. |
11 | Cerovic V, Houston SA, Scott CL, et al. Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells[J]. Mucosal Immunol, 2013, 6(1): 104. |
12 | Yokota-Nakatsuma A. [Retinoic acid prevents dendritic cells from inducing novel inflammatory T cells that produce abundant interleukin-13][J]. Yakugaku Zasshi, 2017, 137(12): 1491. |
13 | Tan J, McKenzie C, Vuillermin PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways[J]. Cell Rep, 2016, 15(12): 2809. |
14 | Oshima T, Miwa H. Gastrointestinal mucosal barrier function and diseases[J]. J Gastroenterol, 2016, 51(8): 768. |
15 | Satoh-Takayama N, Kato T, Motomura Y, et al. Bacteria-induced group 2 innate lymphoid cells in the stomach provide immune protection through induction of IgA[J]. Immunity, 2020, 52(4): 635. |
16 | Nakamura Y, Mimuro H, Kunisawa J, et al. Microfold cell-dependent antigen transport alleviates infectious colitis by inducing antigen-specific cellular immunity[J]. Mucosal Immunol, 2020, 13(4): 679. |
17 | Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3): 141. |
18 | Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1. |
19 | Jiao YH, Wu L, Huntington ND, et al. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases[J]. Front Immunol, 2020,11: 282. |
20 | Takahashi D, Hoshina N, Kabumoto Y, et al. Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells[J]. EBioMedicine, 2020,58: 102913. |
21 | Thaiss CA, Zmora N, Levy M, et al. The microbiome and innate immunity[J]. Nature, 2016, 535(7610): 65. |
22 | Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4⁺ T-cell responses to intestinal commensal bacteria[J]. Nature, 2013, 498(7452): 113. |
23 | Smole U, Schabussova I, Pickl WF, et al. Murine models for mucosal tolerance in allergy[J]. Semin Immunol, 2017, 30: 12. |
24 | Agace WW, McCoy KD. Regionalized development and maintenance of the intestinal adaptive immune landscape[J]. Immunity, 2017, 46(4): 532. |
25 | Reboldi A, Arnon TI, Rodda LB, et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches[J]. Science, 2016, 352(6287): aaf4822. |
26 | Mikulic J, Longet S, Favre L, et al. Secretory IgA in complex withLactobacillus rhamnosuspotentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β[J]. Cell Mol Immunol, 2017, 14(6): 546. |
27 | Sujino T, London M, van Konijnenburg DPH, et al. Tissue adaptation of regulatory and intraepithelial CD4⁺ T cells controls gut inflammation[J]. Science, 2016, 352(6293): 1581. |
28 | Wang L, Zhu LM, Qin S. Gut microbiota modulation on intestinal mucosal adaptive immunity[J]. J Immunol Res, 2019, 2019: 4735040. |
29 | Zhou BL, Yuan YT, Zhang SS, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Front Immunol, 2020, 11: 575. |
30 | Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD[J]. Autophagy, 2020, 16(1): 38. |
31 | Peterson DA, Frank DN, Pace NR, et al. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases[J]. Cell Host Microbe, 2008, 3(6): 417. |
32 | Takahashi K, Nishida A, Fujimoto T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in crohn's disease[J]. Digestion, 2016, 93(1): 59. |
33 | Bustamante M, Oomah BD, Oliveira WP, et al. Probiotics and prebiotics potential for the care of skin,female urogenital tract, and respiratory tract[J]. Folia Microbiol (Praha), 2020, 65(2): 245. |
34 | Lycke N, Bemark M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins[J]. Mucosal Immunol, 2010, 3(6): 556. |
35 | Norton EB, Lawson LB, Freytag LC, et al. Characterization of a mutantEscherichia coliheat-labile toxin, LT (R192G/L211A), as a safe and effective oral adjuvant[J]. Clin Vaccine Immunol, 2011, 18(4): 546. |
36 | Larena M, Holmgren J, Lebens M, et al. Cholera toxin, and the related nontoxic adjuvants mmCT and dmLT, promote human Th17 responses via cyclic AMP-protein kinase A and inflammasome-dependent IL-1 signaling[J]. J Immunol, 2015, 194(8): 3829. |
37 | La Fata G, Weber P, Mohajeri MH. The gut immune system: indirect regulation[J]. Probiotics Antimicrob Proteins, 2018, 10(1): 11. |
38 | 翁剑锋, 徐佳, 刘朋, 等. 粪菌移植干预治疗溃疡性结肠炎的免疫学机制研究[J]. 中国全科医学, 2022, 25(3): 298. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||