betway必威登陆网址 (betway.com )学报››2022,Vol. 43››Issue (12): 897-905.DOI:10.3969/j.issn.2097-0005.2022.12.004
收稿日期:
2022-06-12出版日期:
2022-12-25发布日期:
2023-02-08通讯作者:
詹玉林作者简介:
王莹,硕士研究生,研究方向:生物材料与骨缺损,E-mail:1723437081@qq.com。基金资助:
Received:
2022-06-12Online:
2022-12-25Published:
2023-02-08Contact:
Yulin ZHAN摘要:
目的探究在体外成骨诱导环境下,辛伐他汀(simvastatin, SIM)联合岩藻多糖(fucoidan, FD)对SD大鼠骨髓间充质干细胞(bone mesenchymal stem cells, BMSCs)向成骨细胞分化中期的影响。方法(1)从SD大鼠双侧股骨和胫骨的骨髓腔中提取原代细胞,体外培养至P3代进行细胞鉴定。鉴定方法包括细胞形态学观察、流式鉴定、成脂肪鉴定和成软骨鉴定。(2)取P3代BMSCs,分为空白组(DMEM完全培养基)和试验组(含有不同FD浓度的DMEM完全培养基)。①采用CCK-8法检测各组培养1、2、3天的细胞活性;②培养至第7天,提取细胞中的总RNA,采用qPCR法检测碱性磷酸酶(alkaline phosphatase, ALP)和骨形态发生蛋白-2(bone morphogenetic protein-2, BMP-2)mRNR的表达情况。③培养至第7天,进行ALP定性和定量分析。综合以上结果确定FD的给药浓度。(3)取P3代BMSCs,分为对照组(OM组)、SIM组、FD组和SIM + FD组。①采用CCK-8法检测各组培养1、2、3天的细胞活性;②培养至第7天,观察细胞形态和生长状况,并拍照记录;③培养至第7天,提取细胞中的总RNA,采用qPCR法检测BMP-2、Ⅰ型胶原(Type I collagen,COLⅠ)、RUNX2以及ALP mRNA的表达情况;④培养至第7天,进行ALP定性和定量分析。结果(1)细胞鉴定。①细胞形态观察:细胞在培养过程中慢慢延伸并舒展开。3代以后,细胞形态基本趋于一致,成纤维样贴壁生长。②流式鉴定:CD29、CD90和CD44呈阳性,表达率分别为99.1%、99.5%、99.4%,CD45呈阴性,表达率为0.4%。③成脂肪鉴定:细胞在诱导过程中逐渐变圆,胞内出现折光性高、大小不一的脂滴,经油红O染色呈红色。④成软骨鉴定:细胞逐渐由长梭形变为三角形或多边形,经阿尔新兰染色,软骨基质呈蓝色,细胞核呈红色。(2)FD的给药浓度。①细胞活性:BMSCs的活性随培养时间和FD的浓度增加而增加。与空白组比较,差异均具有统计学意义(P< 0.001)。②qPCR :浓度为1 μg/mL的FD组BMP-2和ALP mRNA表达量均高于空白组和其他实验组,差异具有统计学意义(P< 0.05)。③ALP定性和定量:当FD浓度为1 μg/mL时,染色最深,ALP活性最高(P< 0.001),说明此浓度下的FD适宜BMSCs的生长和分化。(3)两种药物联合后的促成骨效果。①细胞活性:SIM + FD组的细胞活性明显高于OM组和其他实验组(P< 0.001),说明两种药物联合后对细胞增殖有促进作用;②细胞形态观察:SIM + FD组细胞生长较快,细胞数量明显多于OM组和其他实验组;③qPCR:SIM + FD组成骨相关基因mRNA的表达量均高于OM组、SIM组和FD组(P< 0.001);④ALP定性和定量:定量结果表明,SIM + FD组ALP染色结果最深。定量数据同样显示联合组ALP表达量最高(P< 0.001)。结论辛伐他汀联合岩藻多糖给药可明显促进大鼠BMSCs向成骨细胞分化,使得细胞活性升高,分化中期的成骨相关因子的表达量增加。
王莹, 詹玉林. 辛伐他汀联合岩藻多糖给药对大鼠BMSCs成骨分化的影响[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(12): 897-905.
Ying WANG, Yulin ZHAN. Effects of simvastatin combined with fucoidan administration on osteogenic differentiation of BMSCs[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2022, 43(12): 897-905.
基因 | 序列(5΄-3΄) | 长度(bp) |
---|---|---|
BMP-2 |
正向引物: CTGCGGTCTCCTAAAGGTCG | 375 |
反向引物: CCTCGATGGCTTCTTCGTGA | ||
COLⅠ |
正向引物: TGGACCCCGAGGAAACAATG | 492 |
反向引物: TTCGATGACTGTCTTGCCCC | ||
RUNX2 |
正向引物: TACTCTGCCGAGCTACGAAA | 135 |
反向引物: GGGAGGATTTGTGAAGACCGT | ||
ALP |
正向引物: GCTTCAGTTCCCCCTCAGTC | 456 |
反向引物: CGCATGCGTGAATGAGTGTT | ||
GADPH | 正向引物: AGGATTACGGCCCGGAGATA | 632 |
反向引物: GACCGGGCTAACGGTTGAT |
表1设计的引物序列
基因 | 序列(5΄-3΄) | 长度(bp) |
---|---|---|
BMP-2 |
正向引物: CTGCGGTCTCCTAAAGGTCG | 375 |
反向引物: CCTCGATGGCTTCTTCGTGA | ||
COLⅠ |
正向引物: TGGACCCCGAGGAAACAATG | 492 |
反向引物: TTCGATGACTGTCTTGCCCC | ||
RUNX2 |
正向引物: TACTCTGCCGAGCTACGAAA | 135 |
反向引物: GGGAGGATTTGTGAAGACCGT | ||
ALP |
正向引物: GCTTCAGTTCCCCCTCAGTC | 456 |
反向引物: CGCATGCGTGAATGAGTGTT | ||
GADPH | 正向引物: AGGATTACGGCCCGGAGATA | 632 |
反向引物: GACCGGGCTAACGGTTGAT |
组别 | 培养时间 | ||
---|---|---|---|
1 d | 2 d | 3 d | |
OM | 0.6397 ± 0.018 | 0.9497 ± 0.035 | 1.416 ± 0.054 |
SIM | 0.722 ± 0.016a | 1.453 ± 0.042a | 1.745 ± 0.046a |
FD | 0.74 ± 0.022a | 1.535 ± 0.040a | 1.932 ± 0.055ab |
SIM+FD | 0.8207 ± 0.022abc | 1.649 ± 0.038abc | 2.072 ± 0.027abc |
F | 44.010 | 189.100 | 110.200 |
P | < 0.001 | < 0.001 | < 0.001 |
表2OM组、SIM组、FD组和SIM+FD组BMSCs细胞培养1、2、3天的细胞活性(xˉ ± s,n=3)
组别 | 培养时间 | ||
---|---|---|---|
1 d | 2 d | 3 d | |
OM | 0.6397 ± 0.018 | 0.9497 ± 0.035 | 1.416 ± 0.054 |
SIM | 0.722 ± 0.016a | 1.453 ± 0.042a | 1.745 ± 0.046a |
FD | 0.74 ± 0.022a | 1.535 ± 0.040a | 1.932 ± 0.055ab |
SIM+FD | 0.8207 ± 0.022abc | 1.649 ± 0.038abc | 2.072 ± 0.027abc |
F | 44.010 | 189.100 | 110.200 |
P | < 0.001 | < 0.001 | < 0.001 |
组别 | BMP-2 | COLⅠ | RUNX2 | ALP |
---|---|---|---|---|
OM | 1 | 1 | 1 | 1 |
SIM | 1.353 ± 0.008a | 1.682 ± 0.014a | 1.829 ± 0.014a | 1.667 ± 0.031a |
FD | 1.385 ± 0.012ab | 1.775 ± 0.011ab | 1.874 ± 0.012ab | 1.816 ± 0.020ab |
SIM+FD | 1.463 ± 0.010abc | 2.051 ± 0.016abc | 2.135 ± 0.009abc | 1.977 ± 0.014abc |
F | 1643.000 | 3946.000 | 6947.000 | 1407.000 |
P | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
表3OM组、SIM组、FD组和SIM + FD组BMSCs细胞培养至第7天的qPCR结果(用2-△△Ct表示, xˉ ± s,n = 3)
组别 | BMP-2 | COLⅠ | RUNX2 | ALP |
---|---|---|---|---|
OM | 1 | 1 | 1 | 1 |
SIM | 1.353 ± 0.008a | 1.682 ± 0.014a | 1.829 ± 0.014a | 1.667 ± 0.031a |
FD | 1.385 ± 0.012ab | 1.775 ± 0.011ab | 1.874 ± 0.012ab | 1.816 ± 0.020ab |
SIM+FD | 1.463 ± 0.010abc | 2.051 ± 0.016abc | 2.135 ± 0.009abc | 1.977 ± 0.014abc |
F | 1643.000 | 3946.000 | 6947.000 | 1407.000 |
P | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
组别 | ALP相对表达量 |
---|---|
OM | 39 719 ± 9.603 |
SIM | 51 083 ± 2.568a |
FD | 69 115 ± 5.851ab |
SIM+FD | 137 103 ± 5.508ac |
F | 140 731 811.000 |
P | < 0.001 |
表4OM组、SIM组、FD组和SIM+FD组BMSCs细胞培养至第7天的ALP定量结果(n = 3)
组别 | ALP相对表达量 |
---|---|
OM | 39 719 ± 9.603 |
SIM | 51 083 ± 2.568a |
FD | 69 115 ± 5.851ab |
SIM+FD | 137 103 ± 5.508ac |
F | 140 731 811.000 |
P | < 0.001 |
1 | Li Y, Zhang D, Zhang Y, et al. Augmentation of neovascularization in murine hindlimb ischemia by combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells transplantation[J]. J Biomed Sci, 2010, 17(1): 75. |
2 | Chang PC, Chong LY, Dovban AS, et al. Sequential platelet-derived growth factor-simvastatin release promotes dentoalveolar regeneration[J]. Tissue Eng Part A, 2014, 20(1/2): 356. |
3 | Liu YS, Ou ME, Liu H, et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration[J]. Biomaterials, 2014, 35(15): 4489. |
4 | Hwang PA, Hung YL, Phan NN, et al. Thein vitroandin vivoeffects of the low molecular weight fucoidan on the bone osteogenic differentiation properties[J]. Cytotechnology, 2016, 68(4): 1349. |
5 | Wang Y, Xing M, Cao Q, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies[J]. Mar Drugs, 2019, 17(3): 183. |
6 | Changotade SI, Korb G, Bassil J, et al. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties[J]. J Biomed Mater Res A, 2008, 87(3): 666. |
7 | Xu R, Shi G, Xu L, et al. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity[J]. J Tissue Eng Regen Med, 2018, 12(5): 1209. |
8 | Jin H, Ji Y, Cui Y, et al. Simvastatin-incorporated drug delivery systems for bone regeneration[J]. ACS Biomater Sci Eng, 2021, 7(6): 2177. |
9 | 杨玉彦, 王录美, 孙铭学, 等. 建立ICR小鼠骨髓间充质干细胞的体外分离培养及鉴定方法[J]. 药学服务与研究, 2016, 16(2): 90. |
10 | Wang F, Xiao Y, Neupane S, et al. Influence of fucoidan extracts from different fucus species on adult stem cells and molecular mediators inin vitromodels for bone formation and vascularization[J]. Mar Drugs, 2021, 19(4): 194. |
11 | Kim BS, Yang SS, You HK, et al. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair[J]. J Tissue Eng Regen Med, 2018, 12(3): e1311. |
12 | Lu HT, Lu TW, Chen CH, et al. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2019, 128: 973. |
13 | Venkatesan J, Bhatnagar I, Kim SK. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering[J]. Mar Drugs, 2014, 12(1): 300. |
14 | Puvaneswary S, Talebian S, Raghavendran HB, et al. Fabrication andin vitrobiological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering[J]. Carbohydr Polym, 2015, 134: 799. |
15 | Liu C, Wu Z, Sun HC. The effect of simvastatin on mRNA expression of transforming growth factor-beta1, bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket[J]. Int J Oral Sci, 2009, 1(2): 90. |
16 | Yueyi C, Xiaoguang H, Jingying W, et al. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin[J]. Biomaterials, 2013, 34(37): 9373. |
17 | 贾忠宝, 田发明, 崔纳, 等. 辛伐他汀对BMSCs成骨分化早期β-catenin及Runx2表达的影响[J]. 中国骨质疏松杂志, 2013, 19(12): 1237. |
18 | Liu B, Lu Y, Wang Y, et al. A protocol for isolation and identification and comparative characterization of primary osteoblasts from mouse and rat calvaria[J]. Cell Tissue Bank, 2019, 20(2): 173. |
19 | 王双利, 查振刚, 刘宁, 等. 改进酶消化法培养SD大鼠成骨细胞及其鉴定[J]. 实用医学杂志, 2008, 24(6): 915. |
20 | 陈云刚, 谭国庆, 任维龙, 等. 骨碎补含药血清经wnt/β-catenin信号通路对大鼠骨髓间充质干细胞成骨分化的影响[J]. 中国药理学通报, 2017, 33(6): 830. |
21 | Lee DG, Park SY, Chung WS, et al. Fucoidan prevents the progression of osteoarthritis in rats[J]. J Med Food, 2015, 18(9): 1032. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||