betway必威登陆网址 (betway.com )学报››2023,Vol. 44››Issue (3): 186-190.DOI:10.3969/j.issn.2097-0005.2023.03.005
杨寒冰(), 史佳玮, 侯越, 张棋炜, 于海洋, 周延萌(
)
收稿日期:
2022-11-18出版日期:
2023-04-24发布日期:
2023-04-24通讯作者:
周延萌作者简介:
杨寒冰,硕士研究生,研究方向:神经药理学,E-mail:hanbing115917@163.com。Hanbing YANG(), Jiawei SHI, Yue HOU, Qiwei ZHANG, Haiyang YU, Yanmeng ZHOU(
)
Received:
2022-11-18Online:
2023-04-24Published:
2023-04-24Contact:
Yanmeng ZHOU摘要:
第二信使环磷酸腺苷(cyclic adenosine monophosphate,cAMP)参与多种神经退行性疾病的发生发展,如阿尔兹海默病、帕金森病以及亨廷顿病。但是对cAMP进行直接调控具有一定的难度,因此靶向调控cAMP的水解酶有望成为改善神经退行性疾病的新策略。磷酸二酯酶4(phosphodiesterases, PDE4)是特异性催化cAMP的酶,已被证实在多种神经退行性疾病的发展中具有重要作用。研究并开发靶向PDE4的药物将有助于神经退行性疾病的治疗。本文综述了PDE4的特性和功能,回顾了其在神经退行性疾病中的作用及研究进展,并对其在神经退行性疾病中的潜在治疗作用作出展望。
杨寒冰, 史佳玮, 侯越, 张棋炜, 于海洋, 周延萌. PDE4在大脑中的分布及其在神经退行性疾病中的作用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(3): 186-190.
Hanbing YANG, Jiawei SHI, Yue HOU, Qiwei ZHANG, Haiyang YU, Yanmeng ZHOU. Distribution of PDE4 in the brain and its role in neurodegenerative diseases[J]. Journal of Shandong First Medical Unversity & Shandong Academy of Medical Sciences, 2023, 44(3): 186-190.
1 | Oboudiyat C, Glazer H, Seifan A, et al. Alzheimer's disease[J]. Semin Neurol, 2013, 33(4): 313. |
2 | Plath N, Lerdrup L, Larsen PH, et al. Can small molecules provide truly effective enhancement of cognition? Current achievements and future directions[J]. Expert Opin Investig Drugs, 2011, 20(6): 795. |
3 | Gurney ME, D'Amato EC, Burgin AB. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer's disease[J]. Neurotherapeutics, 2015, 12(1): 49. |
4 | Blokland A, Menniti FS, Prickaerts J. PDE inhibition and cognition enhancement[J]. Expert Opin Ther Pat, 2012, 22(4): 349. |
5 | Ghavami A, Hirst WD, Novak TJ. Selective phosphodiesterase (PDE)-4 inhibitors: a novel approach to treating memory deficit?[J]. Drugs R D, 2006, 7(2): 63. |
6 | Kleppisch T. Phosphodiesterases in the central nervous system[J]. Handb Exp Pharmacol, 2009, 191: 71. |
7 | Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: targets for drug development[J]. Nat Rev Drug Discov, 2006, 5(8): 660. |
8 | Xu Y, Zhang HT, O'Donnell JM. Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders[J]. Handb Exp Pharmacol, 2011, 204: 447. |
9 | Pérez-Torres S, Miró X, Palacios JM, et al. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain[J]. J Chem Neuroanat, 2000, 20(3/4): 349. |
10 | Johansson EM, Reyes-Irisarri E, Mengod G. Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain[J]. Neurosci Lett, 2012, 525(1): 1. |
11 | Fatemi SH, Reutiman TJ, Folsom TD, et al. Phosphodiesterase-4A expression is reduced in cerebella of patients with bipolar disorder[J]. Psychiatr Genet, 2008, 18(6): 282. |
12 | Braun NN, Reutiman TJ, Lee S, et al. Expression of phosphodiesterase 4 is altered in the brains of subjects with autism[J]. Neuroreport, 2007, 18(17): 1841. |
13 | Jin SL, Goya S, Nakae S, et al. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma[J]. J Allergy Clin Immunol, 2010, 126(6): 1252. |
14 | Reyes-Irisarri E, Pérez-Torres S, Miró X, et al. Differential distribution of PDE4B splice variant mRNAs in rat brain and the effects of systemic administration of LPS in their expression[J]. Synapse, 2008, 62(1): 74. |
15 | Ahmed T, Frey JU. Expression of the specific type Ⅳ phosphodiesterase gene PDE4B3 during different phases of long-term potentiation in single hippocampal slices of ratsin vitro[J]. Neuroscience, 2003, 117(3): 627. |
16 | Ahmed T, Frey JU. Phosphodiesterase 4B (PDE4B) and cAMP-level regulation within different tissue fractions of rat hippocampal slices during long-term potentiationin vitro[J]. Brain Res, 2005, 1041(2): 212. |
17 | Ahmed T, Frey S, Frey JU. Regulation of the phosphodiesterase PDE4B3-isotype during long-term potentiation in the area dentatain vivo[J]. Neuroscience, 2004, 124(4): 857. |
18 | Zhang HT, Huang Y, Masood A, et al. Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B)[J]. Neuropsychopharmacology, 2008, 33(7): 1611. |
19 | Jin SL, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses[J]. Proc Natl Acad Sci U S A, 2002, 99(11): 7628. |
20 | Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer's disease, role of cytokines[J]. ScientificWorldJournal, 2012, 2012: 756357. |
21 | Sebastiani G, Morissette C, Lagacé C, et al. The cAMP-specific phosphodiesterase 4B mediates Aβ-induced microglial activation[J]. Neurobiol Aging, 2006, 27(5): 691. |
22 | Miró X, Pérez-Torres S, Puigdomènech P, et al. Differential distribution of PDE4D splice variant mRNAs in rat brain suggests association with specific pathways and presynaptical localization[J]. Synapse, 2002, 45(4): 259. |
23 | Rutten K, Misner DL, Works M, et al. Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice[J]. Eur J Neurosci, 2008, 28(3): 625. |
24 | Li YF, Cheng YF, Huang Y, et al. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling[J]. J Neurosci, 2011, 31(1): 172. |
25 | Burgin AB, Magnusson OT, Singh J, et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety[J]. Nat Biotechnol, 2010, 28(1): 63. |
26 | Bruno O, Fedele E, Prickaerts J, et al. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses[J]. Br J Pharmacol, 2011, 164(8): 2054. |
27 | Wang ZZ, Zhang Y, Liu YQ, et al. RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects[J]. Br J Pharmacol, 2013, 168(4): 1001. |
28 | Schaefer TL, Braun AA, Amos-Kroohs RM, et al. A new model of Pde4d deficiency: genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without spatial cognitive effects[J]. Genes Brain Behav, 2012, 11(5): 614. |
29 | Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system[J]. Neuron, 2002, 35(4): 605. |
30 | Ota KT, Pierre VJ, Ploski JE, et al. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase[J]. Learn Mem, 2008, 15(10): 792. |
31 | Purcell AL, Sharma SK, Bagnall MW, et al. Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in Aplysia[J]. Neuron, 2003, 37(3): 473. |
32 | Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus[J]. J Pharmacol Sci, 2006, 100(5): 433. |
33 | Arancio O, Antonova I, Gambaryan S, et al. Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation[J]. J Neurosci, 2001, 21(1): 143. |
34 | Li YF, Huang Y, Amsdell SL, et al. Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus[J]. Neuropsychopharmacology, 2009, 34(11): 2404. |
35 | Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory[J]. Annu Rev Pharmacol Toxicol, 2002, 42: 135. |
36 | Hoffmann R, Baillie GS, MacKenzie SJ, et al. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579[J]. EMBO J, 1999, 18(4): 893. |
37 | Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation[J]. Trends Cell Biol, 2002, 12(6): 258. |
38 | Gao Y, Deng K, Hou J, et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regenerationin vivo[J]. Neuron, 2004, 44(4): 609. |
39 | Valera E, Sánchez-Martín FJ, Ferrer-Montiel AV, et al. NMDA-induced neuroprotection in hippocampal neurons is mediated through the protein kinase A and CREB (cAMP-response element-binding protein) pathway[J]. Neurochem Int, 2008, 53(5): 148. |
40 | Zhang HT, Zhao Y, Huang Y, et al. Inhibition of the phosphodiesterase 4 (PDE4) enzyme reverses memory deficits produced by infusion of the MEK inhibitor U0126 into the CA1 subregion of the rat hippocampus[J]. Neuropsychopharmacology, 2004, 29(8): 1432. |
41 | Navakkode S, Sajikumar S, Frey JU. Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type Ⅳ-specific phosphodiesterase inhibitor rolipram and its effect on synaptic tagging[J]. J Neurosci, 2005, 25(46): 10664. |
42 | Gouras GK, Olsson TT, Hansson O. β-amyloid peptides and amyloid plaques in Alzheimer's disease[J]. Neurotherapeutics, 2015, 12(1): 3. |
43 | Pooler AM, Noble W, Hanger DP. A role for tau at the synapse in Alzheimer's disease pathogenesis[J]. Neuropharmacology, 2014, 76 Pt A: 1. |
44 | Gao Y, Tan L, Yu JT, et al. Tau in Alzheimer's disease: mechanisms and therapeutic strategies[J]. Curr Alzheimer Res, 2018, 15(3): 283. |
45 | Toledo JB, Zetterberg H, Van Harten AC, et al. Alzheimer's disease cerebrospinal fluid biomarker in cognitively normal subjects[J]. Brain, 2015, 138(Pt 9): 2701. |
46 | 刘俊乐, 张良成. 线粒体功能障碍及炎症与衰老的相关关系[J]. 中华老年多器官疾病杂志, 2019, 18(6): 469. |
47 | Pérez-Torres S, Cortés R, Tolnay M, et al. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer's disease brains examined by in situ hybridization[J]. Exp Neurol, 2003, 182(2): 322. |
48 | Liang Z, Liu F, Grundke-Iqbal I, et al. Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain[J]. J Neurochem, 2007, 103(6): 2462. |
49 | Gong B, Vitolo OV, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment[J]. J Clin Invest, 2004, 114(11): 1624. |
50 | Xu B, Qin Y, Li D, et al. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway[J]. Redox Biol, 2020, 28: 101342. |
51 | Sutcliffe JS, Beaumont V, Watson JM, et al. Efficacy of selective PDE4D negative allosteric modulators in the object retrieval task in female cynomolgus monkeys (Macaca fascicularis)[J]. PLoS One, 2014, 9(7): e102449. |
52 | Chidambaram SB, Bhat A, Ray B, et al. Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP+intoxicated human neuroblastoma cells (SH-SY5Y)[J]. Nutr Neurosci, 2020, 23(6): 471. |
53 | Heckman PRA, Van Duinen MA, Bollen EPP, et al. Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: clinical implications[J]. Int J Neuropsychopharmacol, 2016, 19(10): pyw030. |
54 | Zhong J, Yu H, Huang C, et al. Inhibition of phosphodiesterase 4 by FCPR16 protects SH-SY5Y cells against MPP+-induced decline of mitochondrial membrane potential and oxidative stress[J]. Redox Biol, 2018, 16: 47. |
55 | Hulley P, Hartikka J, Abdel'Al S, et al. Inhibitors of type Ⅳ phosphodiesterases reduce the toxicity of MPTP in substantia nigra neuronsin vivo[J]. Eur J Neurosci, 1995, 7(12): 2431. |
56 | Nishi A, Kuroiwa M, Miller DB, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum[J]. J Neurosci, 2008, 28(42): 10460. |
57 | Takuma K, Lee E, Enomoto R, et al. Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in anin vitroreperfusion model[J]. Br J Pharmacol, 2001, 133(6): 841. |
58 | Hickey MA, Chesselet MF. Apoptosis in Huntington's disease[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2003, 27(2): 255. |
59 | Tanaka M, Ishizuka K, Nekooki-Machida Y, et al. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease[J]. J Clin Invest, 2017, 127(4): 1438. |
60 | Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease[J]. Prog Neurobiol, 2007, 81(5/6): 294. |
61 | Giralt A, Saavedra A, Carretón O, et al. Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington's disease[J]. Hum Mol Genet, 2011, 20(21): 4232. |
62 | DeMarch Z, Giampà C, Patassini S, et al. Beneficial effects of rolipram in the R6/2 mouse model of Huntington's disease[J]. Neurobiol Dis, 2008, 30(3): 375. |
[1] | 董柏萍, 王永生, 吕静静, 韩燕珍, 袁锁伟, 梁永, 毛蕾蕾.基于微小RNA‐146a探究川陈皮素对帕金森病模型的神经保护作用[J]. betway必威登陆网址 (betway.com )学报, 2023, 44(4): 254-259. |
[2] | 郑天成, 郭俊, 孙宪昌.RIP1/RIP3介导的程序性坏死在LPS诱导的多巴胺神经元损伤中的作用[J]. betway必威登陆网址 (betway.com )学报, 2022, 43(7): 481-488. |
[3] | 王倩, 肖洪玲, 肖云久, 陈美玲, 张贻婷.预见性护理对阿尔茨海默病患者效果的Meta分析[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(7): 534-539. |
[4] | 冯春玲, 史革鑫, 郭硕, 王蕾.枸杞子干预阿尔茨海默病作用机制的网络药理学研究[J]. betway必威登陆网址 (betway.com )学报, 2021, 42(12): 883-888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||